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Chapter 4

Vector Spaces

In this chapter you are introduced to the idea of vector spaces. The presen-
tation of this topic so early in the book is to help you develop geometric
intuition that will be useful in later chapters. The geometric insights can
be hard to grasp at first, especially in higher-dimensional spaces, but the
mathematical operations used throughout this chapter do not go beyond
addition, multiplication, and taking square roots.

We begin by thinking of points in the 2-dimensional Cartesian plane as
vectors, and consider ideas such as the norm of a vector, the angle between
vectors, and the linear combination of vectors. This leads to the concepts
of vector spaces and subspaces, and their dimensions. Pythagoras’s Theo-
rem is extended to the Law of Cosines for non-right-angled triangles, and
the Triangle Inequality and the Cauchy-Schwarz Inequality are established.
We then take these concepts to 3-dimensional space, and show how they
extend to yet higher dimensional spaces. We also extend the Gaussian
elimination method of Section 2.1.5 to solving systems of equations in 3 or
more unknowns. A later chapter will explore the connection between vec-
tor spaces and the problem of solving systems of linear equations, although
some remarks are made in this chapter regarding this connection.

We discuss Python lists and tuples, and numpy arrays in the program-
ming section.

4.1 2-Dimensional Vector Spaces
Consider the set ℝ2, comprising all points in the 2-dimensional Cartesian
coordinate system. For any two points 𝑢 = (𝑥1, 𝑦1) and 𝑣 = (𝑥2, 𝑦2) in this
set, define scalar multiplication to be the operation

𝛼𝑢 = (𝛼𝑥1, 𝛼𝑦1) (4.1)

where 𝛼 is some real number, and define vector addition to be

𝑢 + 𝑣 = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) . (4.2)

With these two definitions, the set of points in the Cartesian plane becomes
a vector space (or a linear space) and the points are called vectors. We
can use the scalar multiplication and addition operations to create linear
combinations of vectors, such as

𝛼1𝑢 + 𝛼2𝑣 .

These operations generally result in new vectors.
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Vector addition is illustrated in Fig. 4.1(b) with 𝑢+𝑣. You can view this
sum as displacing an object at the origin by the distances and directions
represented by 𝑢 and 𝑣 simultaneously. Alternatively, you can view 𝑢 + 𝑣
as moving an object from the origin to 𝑢 and then to 𝑢 + 𝑣. In this sense
the dotted arrow from 𝑢 to 𝑢 + 𝑣 also represents the vector 𝑣. Likewise,
you can view 𝑢 + 𝑣 as moving the object from the origin to 𝑣 and then to
𝑢 + 𝑣, so the dotted arrow from 𝑣 to 𝑢 + 𝑣 also represents the vector 𝑢. In
the arrow representation, two arrows parallel to each other, with the same
magnitude and pointing in the same direction, represent the same vector.

Notice that the arrow from the origin representing the vector 𝑢+ 𝑣 is a
diagonal of the parallelogram formed from the arrows from the origin to 𝑢
and to 𝑣, and from 𝑢 and 𝑣 to 𝑢 + 𝑣. Since 𝑢 = 𝑣 + (𝑢 − 𝑣), 𝑢 − 𝑣 can be
represented by an arrow from 𝑣 to 𝑢 (the other diagonal).

Given the two vectors 𝑢 and 𝑣 in Fig. 4.1, we can express any vector
in the space ℝ2 by taking an appropriate linear combination of 𝑢 and 𝑣.
Suppose we want to express the vector (6, 4) as a linear combination of 𝑢
and 𝑣. This means finding 𝛼 and 𝛽 such that

𝛼𝑢 + 𝛽𝑣 = 𝛼(−1, 1) + 𝛽(2, 2) = (6, 4) , (4.3)

i.e.,
−𝛼+ 2𝛽 = 6
𝛼 + 2𝛽 = 4 . (4.4)

This system is easily solved to give 𝛼 = −1 and 𝛽 = 5/2. Notice also that
this is the only solution to (4.4), so there is only one linear combination of
𝑢 and 𝑣 that gives the vector (6, 4).

We can repeat this process for any arbitrary vector in the 2-dimensional
space. For any vector (𝑥∗, 𝑦∗), we can find 𝛼 and 𝛽 such that

𝛼𝑢 + 𝛽𝑣 = 𝛼(−1, 1) + 𝛽(2, 2) = (𝑥∗, 𝑦∗) .

The values 𝛼 = (𝑦∗ − 𝑥∗)/2 and 𝛽 = (𝑦∗ + 𝑥∗)/4 will do the trick. Put
another way, the set of ALL linear combinations of the form 𝛼𝑢+𝛽𝑣, when
we consider all values of 𝛼 and 𝛽, makes up the entire ℝ2 space. We say
that the vectors 𝑢 and 𝑣 span the entire 2-dimensional ℝ2 vector space. We
also say that the two vectors 𝑢 and 𝑣 form a basis for ℝ2.

That we can express any vector in ℝ2 as a linear combination of two
fixed vectors is true for the pair 𝑢 = (−1, 1) and 𝑣 = (2, 2), and it is true for
many other pairs as well, including 𝑢 = (0, 1) and 𝑣 = (1, 0), 𝑢 = (0, 1) and
𝑣 = (1, 1), and so on. But it is not true for all pairs of vectors. Suppose you
start with some vector 𝑣 and take the other vector to be 𝑤 = 1.5𝑣. Linear
combinations of these two vectors will merely return another multiple of 𝑣:

𝛼𝑣 + 𝛽𝑤 = 𝛼𝑣 + 𝛽1.5𝑣 = (𝛼 + 1.5𝛽)𝑣 .
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That is, you will only be able to replicate vectors in the direction of 𝑣 or
its reverse, and not any other vector. The set of all linear combinations of
𝑢 and 𝑤 will form a strict subset of ℝ2, making up a line passing through
the origin. We say that the vectors 𝑣 and 𝑤 do not span the entire 2-
dimensional vector space, but only span a 1-dimensional subspace of it.
Two 2-dimensional vectors will span a 1-dimensional subspace (a line pass-
ing through the origin) if one of the vectors is a multiple of the other, or if
one is zero and the other not zero. If both 𝑢 and 𝑣 are zero, then of course
all linear combinations of 𝑢 and 𝑣 result in the zero vector. We view this
as a “0-dimensional” subspace of ℝ2.

Because 𝑢 and 𝑣 spans ℝ2, for any vector 𝑏 in ℝ2 there is exactly one
linear combination of 𝑢 and 𝑣 that gives 𝑏. In particular, the only linear
combination that gives the zero vector (0, 0) is

0 𝑢 + 0 𝑣 = (0, 0) .
In other words,

𝑐1𝑢 + 𝑐2𝑣 = (0, 0) ⇒ 𝑐1 = 𝑐2 = 0 . (4.5)

We say that 𝑢 and 𝑣 are linearly independent if they satisfy (4.5). If two
vectors do not satisfy this condition, we say they are linearly dependent.
This will be the case if one of 𝑢 and 𝑣 is a multiple of the other, or one or
both are zero vectors. If 𝑢 = 𝛼𝑣, then 𝑢 − 𝛼𝑣 = (0, 0) so we have non-zero
𝑐1 and 𝑐2 such that 𝑐1𝑢 + 𝑐2𝑣 = 0. If one (say 𝑢) is the zero vector, then
𝑐1𝑢+ 0𝑣 = (0, 0) for any 𝑐1, including non-zero 𝑐1. If both are zero vectors,
then 𝑐1𝑢 + 𝑐2𝑣 = (0, 0) regardless of 𝑐1 and 𝑐2.

If two 2-dimensional vectors span the entire space ℝ2, then any third
vector can be written as a combination of the first two. This means that a
set of 𝑛 2-dimensional vectors, 𝑛 ≥ 3, cannot satisfy the condition

𝑐1𝑢1 + 𝑐2𝑢2 +⋯+ 𝑐𝑛𝑢𝑛 = (0, 0) ⇒ 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑛 = 0 . (4.6)

A set of three or more 2-dimensional vectors must be linearly dependent.
Of course, such a set could well span only a lower dimensional subspace of
ℝ2, but it can span at most the entire space.4

What happens if we take restricted linear combinations of the form

(1 − 𝛼)𝑢 + 𝛼𝑣 ? (4.7)

Writing (4.7) as 𝑢+𝛼(𝑣−𝑢), it should be clear that if we consider the set of
all such linear combinations, with 𝛼 ∈ ℝ, then we get the entire line passing
through the two points 𝑢 and 𝑣. Fig. 4.2 shows 𝑢 = (−1, 1) and 𝑣 = (2, 2)
with linear combinations of the form (4.7) with 𝛼 = −0.3, 0.2, 0.5 and 1.5
in grey. Setting 𝛼 = 0.5 gives the point that lies exactly midway between 𝑢
and 𝑣. Can you tell which grey vector corresponds with which value of 𝛼?

4Incidentally, the term “basis for ℝ2 is reserved for sets of exactly two vectors that
span the entire ℝ2 space.
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4.1.1 The Dot Product
Define the dot product of two vectors 𝑢 = (𝑥1, 𝑦1) and 𝑣 = (𝑥2, 𝑦2) to be

𝑢 ⋅ 𝑣 = 𝑥1𝑥2 + 𝑦1𝑦2
The dot product is also sometimes called the inner product or scalar
product. It is straightforward to show (see Ex. 4.1) that

• 𝑢 ⋅ 𝑣 = 𝑣 ⋅ 𝑢,
• (𝑢 + 𝑣) ⋅ 𝑧 = 𝑢 ⋅ 𝑧 + 𝑣 ⋅ 𝑧 (where 𝑧 is a third vector), and
• (𝛼𝑢) ⋅ 𝑣 = 𝛼(𝑢 ⋅ 𝑣) (where 𝛼 is some number).

The second of these implies that for any four vectors 𝑢, 𝑣, 𝑤 and 𝑧, we have
(𝑢 + 𝑣) ⋅ (𝑤 + 𝑧) = 𝑢 ⋅ 𝑤 + 𝑣 ⋅ 𝑤 + 𝑢 ⋅ 𝑧 + 𝑣 ⋅ 𝑧 .

We refer to the distance of the point 𝑢 = (𝑥1, 𝑦1) from the origin, i.e.,
(𝑥2

1 + 𝑦21)1/2, as the magnitude6 or norm of the vector 𝑢, denoted as ‖𝑢‖.
Since 𝑢 ⋅ 𝑢 = 𝑥1𝑥1 + 𝑦1𝑦1 = 𝑥2

1 + 𝑦21 = ‖𝑢‖2, we have
‖𝑢‖ = (𝑢 ⋅ 𝑢)1/2 .

Obviously 𝑢 ⋅ 𝑢 ≥ 0, and equal to zero if (and only if) 𝑢 = (0, 0). Similarly,
the distance between two points 𝑢 = (𝑥1, 𝑦1) and 𝑣 = (𝑥2, 𝑦2) is the square
root of ‖𝑣 − 𝑢‖, since

(𝑣 − 𝑢) ⋅ (𝑣 − 𝑢) = (𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 = ‖𝑣 − 𝑢‖2 .
Furthermore, we have ‖𝑣 − 𝑢‖ = ‖𝑢 − 𝑣‖.

If a vector 𝑢 has magnitude ‖𝑢‖, then 𝑢/‖𝑢‖ will be a unit vector, i.e., a
vector with magnitude 1. For example, 𝑢 = (1,−1) has norm

√
2, whereas

the vector
𝑢
‖𝑢‖ = ( 1√

2
,− 1√

2
)

has norm √1/2 + 1/2 = 1.
Suppose two vectors 𝑢 and 𝑣 are perpendicular to each other. Then

𝑢− 𝑣 is the hypotenuse of the right-angled triangle formed by the origin, 𝑢
and 𝑣, and by Pythagoras’s Theorem, we have

‖𝑢‖2 + ‖𝑣‖2 = ‖𝑢 − 𝑣‖2 .
In terms of the dot product, this says

𝑢 ⋅ 𝑢 + 𝑣 ⋅ 𝑣 = (𝑢 − 𝑣) ⋅ (𝑢 − 𝑣)
𝑥2
1 + 𝑦21 + 𝑥2

2 + 𝑦22 = (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

𝑥2
1 + 𝑦21 + 𝑥2

2 + 𝑦22 = 𝑥2
1 + 𝑥2

2 − 2𝑥1𝑥2 + 𝑦21 + 𝑦22 − 2𝑦1𝑦2
𝑥1𝑥2 + 𝑦1𝑦2 = 0

6We refrain from referring to ‖𝑢‖ as the length of the vector, since in computer pro-
gramming the “length” of a vector refers to the number of elements in the vector.
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In other words, 𝑢 ⋅𝑣 = 0 for all perpendicular vectors 𝑢 and 𝑣. For example,
the vectors 𝑢 = (−1, 1) and 𝑣 = (2, 2) in Fig. 4.1 are perpendicular, and we
have 𝑢 ⋅ 𝑣 = (−1)(2) + (1)(2) = 0. The vectors 𝑢 + 𝑣 = (1, 3) and 𝑣 are not
perpendicular, and we have (𝑢 + 𝑣) ⋅ 𝑣 = (1)(2) + (3)(2) ≠ 0.

4.1.2 Law of Cosines
The fact that perpendicular vectors have zero dot product is a special case
of the following result:

Law of Cosines: If 𝜃 is the angle between two vectors 𝑢 and 𝑣, then
𝑢
‖𝑢‖ ⋅ 𝑣

‖𝑣‖ = cos 𝜃 i.e., 𝑢 ⋅ 𝑣 = ‖𝑢‖ ‖𝑣‖ cos 𝜃 . (4.10)

Proof:  Given vectors 𝑢 and 𝑣, the vectors
𝑢
‖𝑢‖ and 𝑣

‖𝑣‖
are unit vectors. This means they are located on the unit circle, and can
be written as

𝑢
‖𝑢‖ = (cos𝛼, sin𝛼) and 𝑣

‖𝑣‖ = (cos𝛽, sin𝛽)

where the angle between the two vectors is 𝜃 = 𝛼−𝛽. This is illustrated in
Fig. 4.3(a) for a particular pair 𝑢 and 𝑣. Taking the dot product of 𝑢/‖𝑢‖
and 𝑣/‖𝑣‖ gives

𝑢
‖𝑢‖ ⋅ 𝑣

‖𝑣‖ = cos𝛼 cos𝛽 + sin𝛼 sin𝛽 . (4.11)

A fundamental result in trigonometry called the “subtraction formula for
cosines” (which we will prove momentarily) says that

cos𝛼 cos𝛽 + sin𝛼 sin𝛽 = cos(𝛼 − 𝛽) . (4.12)

Applying (4.12) to (4.11) gives
𝑢
‖𝑢‖ ⋅ 𝑣

‖𝑣‖ = cos(𝛼 − 𝛽) = cos 𝜃 , i.e., 𝑢 ⋅ 𝑣 = ‖𝑢‖ ‖𝑣‖ cos 𝜃 .

To show (4.12), rotate the vectors in Fig. 4.3(a) clockwise by an angle
of 𝛽 to get Fig. 4.3(b). Using the formula for the distance between two
points, we have from Fig. 4.3(a) that

𝑑2 = (cos𝛼 − cos𝛽)2 + (sin𝛼 − sin𝛽)2 , (4.13)

and from Fig. 4.3(b) that

𝑑2 = (cos(𝛼 − 𝛽) − 1)2 + sin2(𝛼 − 𝛽) . (4.14)

Equating these two expressions for 𝑑2, simplifying, and using the fact that
cos2 𝛾 + sin2 𝛾 = 1 for any angle 𝛾 gives (4.12). (See Ex. 4.2.)
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Fig. 4.3. The subtraction formula for cosines.

Digression: Trigonometric Identities. The identity (4.12) is one of a set of identi-
ties called the “addition and subtraction formulas”. Together with sin2 𝜃+cos2 𝜃 =
1, the addition and subtraction formulas are worth committing to memory. The
addition formulas are:

sin(𝜃 + 𝛾) = sin 𝜃 cos 𝛾 + cos 𝜃 sin 𝛾
cos(𝜃 + 𝛾) = cos 𝜃 cos 𝛾 − sin 𝜃 sin 𝛾 (4.15)

and the subtraction formulas are
sin(𝜃 − 𝛾) = sin 𝜃 cos 𝛾 − cos 𝜃 sin 𝛾
cos(𝜃 − 𝛾) = cos 𝜃 cos 𝛾 + sin 𝜃 sin 𝛾 (4.16)

We have just proven the cosine subtraction formula. Applying the cosine subtrac-
tion formula and the identities in Table 2.3 to

sin(𝜃 − 𝛾) = cos(𝜃 − (𝛾 + 𝜋/2))
gives the sine subtraction formula. Applying the subtraction formulas to

sin(𝜃 + 𝛾) = sin(𝜃 − (−𝛾)) and cos(𝜃 + 𝛾) = cos(𝜃 − (−𝛾)) ,
gives the addition formulas.

There are yet other trigonometric identities. Setting 𝛾 = 𝜃 in sin(𝜃 + 𝛾) and
cos(𝜃 + 𝛾) gives the Double-Angle Formulas:

sin 2𝜃 = 2 sin 𝜃 cos 𝜃
cos 2𝜃 = cos2 𝜃 − sin2 𝜃 .

From the double-angle formula for cos 2𝜃 and sin2 𝜃 + cos2 𝜃 = 1, we get the
Half-Angle Formulas:

cos2 𝜃 = 1 + cos 2𝜃
2 and sin2 𝜃 = 1 − cos 2𝜃

2 .



August 31, 2024 18:18 book-9x6 Baydur-Preve-Tay index page 91

Vector Spaces 91

The addition and subtraction formulas also gives the Product Formulas:

sin𝑥 cos 𝑦 = 1
2 [sin(𝑥 + 𝑦) + sin(𝑥 − 𝑦)]

cos𝑥 cos 𝑦 = 1
2 [cos(𝑥 + 𝑦) + cos(𝑥 − 𝑦)]

sin𝑥 sin 𝑦 = 1
2 [cos(𝑥 − 𝑦) − cos(𝑥 + 𝑦)] .

The Law of Cosines gives a nice geometric interpretation to the dot
product: the dot product of two unit vectors is the cosine of the angle
between them. But why do we refer to it as the Law of Cosines? First note
that for any vectors 𝑢 and 𝑣, we have

‖𝑢 − 𝑣‖2 = ‖𝑢‖2 − 2𝑢 ⋅ 𝑣 + ‖𝑣‖2 = ‖𝑢‖2 − 2‖𝑢‖ ‖𝑣‖ cos 𝜃 + ‖𝑣‖2 . (4.17)

The first equality comes from the dot product definition (see Ex. 4.3). The
second equality comes from (4.10).

AB

C

a

b
c

Fig. 4.4. The Law of Cosines and the Triangle Inequality.

Now suppose 𝐴, 𝐵 and 𝐶 are three arbitrary points, as illustrated in
Fig. 4.4. Let 𝑐 = ‖𝐴 − 𝐶‖, 𝑎 = ‖𝐴 − 𝐵‖, 𝑏 = ‖𝐶 − 𝐵‖, and let 𝜃 be the
angle made by the vectors 𝐴−𝐵 and 𝐶 −𝐵. Substituting 𝑢 = 𝐴−𝐵 and
𝑣 = 𝐶 − 𝐵 into (4.17) gives

‖𝐴 − 𝐶‖2 = ‖𝐴 −𝐵‖2 + ‖𝐶 − 𝐵‖2 − 2‖𝐴 − 𝐵‖ ‖𝐶 − 𝐵‖ cos 𝜃 . (4.18)

Writing in terms of 𝑎, 𝑏 and 𝑐 reveals the form of the Law of Cosines that
you may be more familiar with:

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝜃 . (4.19)

The Law of Cosines is a generalization of Pythagoras’s Theorem. Eq. (4.19)
simplifies to 𝑐2 = 𝑎2 + 𝑏2 when the triangle is right-angled, i.e., when
cos 𝜃 = 0.

4.1.3 The Triangle Inequality
The Law of Cosines also gives us another important fact about geometric
distances, that is, that the straight line distance from point 𝐴 to 𝐵, and
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then onto to point 𝐶, is no less than the straight line distance from 𝐴
directly to 𝐶. This is the Triangle inequality, which is implied by the
Law of Cosines. Because −1 ≤ cos 𝜃 ≤ 1, the maximum value of the RHS
of (4.18) occurs when cos 𝜃 = −1, that is,

‖𝐴 − 𝐶‖2 ≤ ‖𝐴 − 𝐵‖2 + ‖𝐶 − 𝐵‖2 + 2‖𝐴 − 𝐵‖ ‖𝐶 − 𝐵‖
= (‖𝐴 − 𝐵‖ + ‖𝐶 − 𝐵‖)2.

(4.20)

Taking square roots on both sides gives

‖𝐴 − 𝐶‖ ≤ ‖𝐴 − 𝐵‖ + ‖𝐶 − 𝐵‖ . (4.21)

4.1.4 The Cauchy-Schwarz Inequality
The fact that 𝑢 ⋅ 𝑣 = ‖𝑢‖ ‖𝑣‖ cos 𝜃 and −1 ≤ cos 𝜃 ≤ 1 means that

−‖𝑢‖ ‖𝑣‖ ≤ 𝑢 ⋅ 𝑣 ≤ ‖𝑢‖ ‖𝑣‖ , i.e., |𝑢 ⋅ 𝑣| ≤ ‖𝑢‖‖𝑣‖ . (4.22)

This is a version of the Cauchy-Schwarz inequality. The importance of
this inequality will not be obvious at this point, but it is a key result that
appears in many different areas of mathematics.

4.1.5 Connection with Complex Numbers
How do 2-dimensional vector spaces relate to complex numbers? We have
seen that complex numbers are points (𝑎, 𝑏) ∈ ℝ2 that can be added in ex-
actly the same way as the 2-dimensional vectors we have discussed in this
section. The main difference is that for complex numbers we also define
complex multiplication, in a way that (i) allows us to work with complex
numbers in the same manner that we work with real numbers, (ii) encom-
passes the real number system as a special case of complex number system
(real numbers are just complex numbers of the form (𝑎, 0)), and (iii) allows
us to interpret the second coordinate as the square root of negative numbers,
e.g., (0, 1)(0, 1) = −1. We define scalar multiplication for 2-dimensional
vector spaces but we do not consider multiplication of vectors the way we
multiply complex numbers. In the following sections, we extend our dis-
cussion of 2-dimensional vector spaces to 3- and higher-dimensional vector
spaces. The complex number system can be extended to 4-dimensional sys-
tems (quaternions) and 8-dimensional systems (octonions) but we will not
cover these in this book.

4.1.6 Exercises
Ex. 4.1 Let 𝑢 = (𝑥1, 𝑦1), 𝑣 = (𝑥2, 𝑦2), 𝑧 = (𝑥3, 𝑦3) and 𝑧 = (𝑥4, 𝑦4). Show that

(a) 𝑢 ⋅ 𝑣 = 𝑣 ⋅ 𝑢,
(b) (𝑢 + 𝑣) ⋅ 𝑧 = 𝑢 ⋅ 𝑧 + 𝑣 ⋅ 𝑧, and
(c) (𝛼𝑢) ⋅ 𝑣 = 𝛼(𝑢 ⋅ 𝑣) (where 𝛼 is some number).
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Use result (b) to show that,
(d) (𝑢 + 𝑣) ⋅ (𝑤 + 𝑧) = 𝑢 ⋅ 𝑤 + 𝑣 ⋅ 𝑤 + 𝑢 ⋅ 𝑧 + 𝑣 ⋅ 𝑧.

Ex. 4.2 Equate (4.13) and (4.14) to derive the subtraction formula for cosines.

Ex. 4.3 Let 𝑢 = (𝑥1, 𝑦1), 𝑣 = (𝑥2, 𝑦2). Show that ‖𝑢 − 𝑣‖2 = ‖𝑢‖2 − 2𝑢 ⋅ 𝑣 + ‖𝑣‖2.
Ex. 4.4 Referring to the Triangle Inequality as expressed in (4.21), when will
equality hold?

Ex. 4.5 Consider the line described by the equation 𝑦 = 2 + 3𝑥. Find a vector
equation that describes this line.

4.2 3-Dimensional Vector Spaces
The 3-dimensional Cartesian coordinate system “assigns addresses” to
points in 3-dimensional space.7 We have already used this to visualize
functions of two variables. Fig. 4.5(a) shows a 3-dimensional Cartesian
coordinate system with axes labelled 𝑥, 𝑦 and 𝑧. We include the point
(𝑥, 𝑦, 𝑧) = (3, 5, 5) as an example, together with a few lines to help situate
the point. We draw an arrow from the origin to the point to reflect its
interpretation as a vector, in the “magnitude with direction” sense.
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Fig. 4.5. The 3-dimensional Cartesian coordinate system.

Fig. 4.5(a) is the “classic” style of drawing a 3-dimensional diagram,
with the axes passing through the origin. By convention, the 𝑧-axis points
upwards, and if the 𝑥-axis points toward you, then the 𝑦-axis points to the
right. This is the “right-hand rule”: if you use your right thumb, index and

7There is also a polar coordinate system for 3-dimensional spaces, but we will not
need it in this book.
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middle fingers to make three perpendicular axes, the 𝑧-axis is your thumb,
the 𝑥-axis is your index finger, and the 𝑦-axis is your middle finger. We
plot the same diagram in Fig. 4.5(b) following a style preferred in modern
computer visualizations. This style also follows the right-hand rule, but the
axes “spines” and ticks are placed on the outside of the plot region, and a
grid is included on the floor and on the back panels, like a holodeck.

The plots in Fig. 4.5 are viewed at an elevation of 20o and an azimuth
of 25o. In computer graphics, azimuth refers to the rotation about the verti-
cal axis. We will take azimuth 0 to be the viewpoint where the 𝑥-axis points
directly towards you. Positive azimuth is when you move counter clockwise
around the figure (or if you stay still and rotate the figure clockwise). An
elevation of 90o means you are looking down from above the 𝑧-axis. If you
set elevation and azimuth to 0 you will only see a vertical 𝑧-axis, and a
horizontal 𝑦-axis. If you set elevation at 90 and azimuth at −90, you will
see only a vertical 𝑦 axis, and a horizontal 𝑥-axis, with the 𝑧-axis pointing
right at you. Choose elevation and azimuth to maximize readability of your
plot.

Fig. 4.6. Two 3-dimensional vectors and the distance between them.

We denote the set of all 3-dimensional points in the Cartesian coordinate
space by ℝ3 and refer to the points as vectors. In Fig. 4.6(a) we plot two
points 𝑢 = (𝑥1, 𝑦1, 𝑧1) and 𝑣 = (𝑥2, 𝑦2, 𝑧2) together with the vector arrows.
In Fig. 4.6(b), we removed the arrows, added in a few additional lines, and
marked the lengths of some of those lines by 𝑎, 𝑏, and 𝑐, with 𝑐 indicating
the distance between 𝑢 and 𝑣. One application of Pythagoras’s Theorem
shows that 𝑎2 = (𝑥2−𝑥1)2+(𝑦2−𝑦1)2. Another application of Pythagoras’s
Theorem shows that

𝑐2 = 𝑎2 + 𝑏2 = (𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 .
In other words, the distance (or norm) between two points 𝑢 = (𝑥1, 𝑦1, 𝑧1)
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and 𝑣 = (𝑥2, 𝑦2, 𝑧2) in 3-dimensional space is

distance(𝑢, 𝑣) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 .

Likewise, the magnitude of a vector 𝑢 = (𝑥1, 𝑦1, 𝑧1) is

‖𝑢‖ = √𝑥2
1 + 𝑦21 + 𝑧21 .

Define scalar multiplication and addition in the usual way, i.e., for any
vectors 𝑢 = (𝑥1, 𝑦1, 𝑧1) and 𝑣 = (𝑥2, 𝑦2, 𝑧2) in ℝ3, define

𝛼𝑢 = (𝛼𝑥1, 𝛼𝑦1, 𝛼𝑧1) and 𝑢 + 𝑣 = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2, 𝑧1 + 𝑧2)

This makes ℝ3 a vector space. We can take linear combinations of vectors in
the usual way. We can also define the dot product 𝑢⋅𝑣 = 𝑥1𝑥2+𝑦1𝑦2+𝑧1𝑧2.
As before, we have

‖𝑢‖2 = 𝑢 ⋅ 𝑢 .
You probably can see (in your mind’s eye) that:

(a) Scalar multiplication of a non-zero vector by 𝛼 stretches or shrinks
the vector, reversing its direction if 𝛼 is negative.

(b) If one vector is a scalar multiple of another, they lie on the same line.
Taking all linear combinations of the two vectors gives you that line,
which passes through the origin. It is a 1-dimensional vector subspace
of the 3-dimensional space ℝ3.

(c) Two non-zero vectors that do not lie on the same line will lie on a
plane. A linear combination of the two vectors results in a new vector
lying on that same plane. The set of all linear combinations of the two
vectors gives you the entire plane, which passes through the origin. It
is a 2-dimensional vector subspace of ℝ3.

(d) If you have two vectors that are not scalar multiples of each other,
and you add a third vector that does not lie on the plane spanned
by the first two, then you have three linearly independent vectors;
you cannot express any one of these vectors as a multiple or linear
combination of the others. Taking the set of all linear combinations
of three linearly independent vectors in ℝ3 gives you the entire space.

As in the case of 2-dimensional vectors, we say that a set of three 3-
dimensional vectors 𝑢1, 𝑢2, 𝑢3 are linearly independent if

𝑐1𝑢1 + 𝑐2𝑢2 + 𝑐3𝑢3 = 0 ⇒ 𝑐1 = 𝑐2 = 𝑐3 = 0 .

If this condition holds, then the three vectors will span the entire space
ℝ3. If any of the vectors are zero, or if any of the vectors are multiples
of another, or if any of the vectors can be constructed as a linear com-
bination of the others, then this condition will not hold, and the vectors
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are linearly dependent. We can extend this condition to any number
of 3-dimensional vectors. Two 3-dimensional vectors can be linearly depen-
dent or linearly independent. Four or more 3-dimensional vectors must be
linearly dependent.

Recall that if you have two non-identical 2-dimensional vectors (points),
their affine combinations (linear combinations where the coefficients add to
one) will form a straight line passing through the two points. The same is
true of 3-dimensional vectors:

(e) The affine combinations (1 − 𝛼)𝑢 + 𝛼𝑣 of two non-identical points 𝑢
and 𝑣 will lie on a line passing through the two points.

This gives us a way to describe lines in ℝ3. Suppose a line passes through
the points 𝑢 and 𝑣. Then this line satisfies

(𝑥, 𝑦, 𝑧) = (1 − 𝛼)𝑢 + 𝛼𝑣 = 𝑢 + 𝛼(𝑣 − 𝑢) .

Writing 𝑢 = (𝑥1, 𝑦1, 𝑧1) and 𝑣 = (𝑥2, 𝑦2, 𝑧2), we can write

(𝑥, 𝑦, 𝑧) = (𝑥1, 𝑦1, 𝑧1) + 𝛼(𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1)

which is the vector equation of a line in ℝ3. Alternatively, we can
express this in the form of the parametric equations

𝑥 − 𝑥1 = 𝛼(𝑥2 − 𝑥1) , 𝑦 − 𝑦1 = 𝛼(𝑦2 − 𝑦1) , 𝑧 − 𝑧1 = 𝛼(𝑧2 − 𝑧1) , 𝛼 ∈ ℝ

These are straightforward extensions of the vector and parametric equations
of a line in the 2-dimensional space ℝ2.

We reiterate the idea of vector spaces and vector subspaces. We call ℝ3,
the set of all 3-dimensional vectors, a vector space because if 𝑢 and 𝑣 are
in ℝ3, then 𝑐1𝑢 + 𝑐2𝑣 is also in ℝ3, regardless of what 𝑐1 and 𝑐2 are. A
vector subspace is a subset of a vector space, but with the property that if
𝑢 and 𝑣 are in the subset, then 𝑐1𝑢+𝑐2𝑣 is also in that subset, regardless of
the values of 𝑐1 and 𝑐2. For instance, the set of all vectors that make up a
line or a plane in ℝ3 that passes through the origin is a vector subspace of
ℝ3. The set comprising only the point (0, 0, 0) is also a vector subspace of
ℝ3, called the “trivial vector subspace”. However, the set of 3-dimensional
vectors that make up a line or a plane in ℝ3 that does not pass through the
origin is not a vector subspace of ℝ3.

If we have three non-identical 3-dimensional vectors 𝑢1, 𝑢2 and 𝑢3, these
vectors form a triangle lying on a plane (see Fig. 4.7).

(f) The set of all affine combinations of these three vectors

(1 − 𝛼 − 𝛽)𝑢1 + 𝛼𝑢2 + 𝛽𝑢3 (4.23)

will give you the plane containing the triangle. If we further restrict
the coefficients of the affine combinations to be positive (but still
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Fig. 4.7. A triangle in 3-dimensional space.

summing to one), then the affine combinations will give you the filled
triangle.

Geometric arguments similar to those made in the previous section will
reveal that the Law of Cosines will continue to hold (a triangle, after all,
is a 2-dimensional object, even in 3-dimensional space). The fact that two
vectors are perpendicular if their dot product is zero follows as a result, as
does the Triangle Inequality and the Cauchy-Schwarz Inequality.

What is the equation that describes a plane in 3-dimensional space?
Imagine a plane (not necessarily passing through the origin), and picture a
vector that is perpendicular to this plane (this vector is called the normal
vector of the plane). Suppose the point (𝑥0, 𝑦0, 𝑧0) lies on the plane. Then
for any point (𝑥, 𝑦, 𝑧) on the plane, the vector (𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧 − 𝑧0) is
parallel to this plane. If (𝑎, 𝑏, 𝑐) is the normal vector of the plane, then

(𝑎, 𝑏, 𝑐) ⋅ (𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧 − 𝑧0) = 0 .
Expanding this, we get 𝑎𝑥+𝑏𝑦+𝑐𝑧− (𝑎𝑥0 +𝑏𝑦0 +𝑐𝑧0) = 0. Collecting the
constants in the parenthesis into the constant −𝑑, we see that the equation
of a plane can be written

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 .
Another way is to view the plane as formed by the affine combinations

(4.24), without restrictions on 𝛼 and 𝛽. For any point (𝑥, 𝑦, 𝑧) on the
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plane containing the points 𝑢1 = (𝑥1, 𝑦1, 𝑧1), 𝑢2 = (𝑥2, 𝑦2, 𝑧2) and 𝑢3 =
(𝑥3, 𝑦3, 𝑧3), we have

(𝑥, 𝑦, 𝑧) = (1 − 𝛼 − 𝛽)𝑢1 + 𝛼𝑢2 + 𝛽𝑢3
= 𝑢1 + 𝛼(𝑢2 − 𝑢1) + 𝛽(𝑢3 − 𝑢1)
= (𝑥1, 𝑦1, 𝑧1) + 𝛼(𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1)

+ 𝛽(𝑥3 − 𝑥1, 𝑦3 − 𝑦1, 𝑧3 − 𝑧1) .

(4.24)

We can write this as three separate equations, which gives the parametric
equations of a plane:

𝑥 = 𝑥1 + 𝛼(𝑥2 − 𝑥1) + 𝛽(𝑥3 − 𝑥1)
𝑦 = 𝑦1 + 𝛼(𝑦2 − 𝑦1) + 𝛽(𝑦3 − 𝑦1)
𝑧 = 𝑧1 + 𝛼(𝑧2 − 𝑧1) + 𝛽(𝑧3 − 𝑧1) .

The difference between the parametric equations for a plane in ℝ3 and
a line in ℝ3 is that the equations for the plane have two parameters 𝛼
and 𝛽 whereas the equation for the line has just one parameter. This
corresponds to the notion that a line is “1-dimensional” whereas a plane is
“2-dimensional”.

4.2.1 Exercises
Ex. 4.6 Let 𝑢 = (1, 1, 1), 𝑣 = (1,−2, 1) and 𝑤 = (2, 1, 0). Which vector has the
largest magnitude? Which pairs of vectors are perpendicular? Find the angle
between any pair of non-perpendicular vectors.
Ex. 4.7 Consider a plane in ℝ3 passing through the points 𝐴 = (2, 2, 4), 𝐵 =
(1, 0, 3) and 𝐶 = (−1, 3, 2). Show that the vector (5, 1,−7) is a normal vector to
this plane. Find the equation of this plane.

4.3 n-Dimensional Vector Spaces
An 𝑛-dimensional vector is an ordered collection of 𝑛 numbers

(𝑥1, 𝑥2,… , 𝑥𝑛) .
If all of the entries in a vector are zero, we call it the zero vector. Given
any two such vectors

𝑢 = (𝑢1, 𝑢2,… , 𝑢𝑛) and 𝑣 = (𝑣1, 𝑣2,… , 𝑣𝑛) ,
define scalar multiplication and vector addition in the usual way:

𝛼𝑢 = (𝛼𝑢1, 𝛼𝑢2,… , 𝛼𝑢𝑛) ,
𝑢 + 𝑣 = (𝑢1 + 𝑣1, 𝑢2 + 𝑣2,… , 𝑢𝑛 + 𝑣𝑛) .

We can take linear combinations in the usual way. The set of all 𝑛-
dimensional vectors together with the scalar multiplication and vector ad-
dition definitions make up the 𝑛-dimensional vector space, denoted ℝ𝑛.
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We can also define the dot product

𝑢 ⋅ 𝑣 = 𝑢1𝑣1 + 𝑢2𝑣2 +⋯+ 𝑢𝑛𝑣𝑛 .

The dot product continues to have the following properties, presented earlier
for 2- and 3-dimensional vectors.
Theorem 4.1 (The Dot Product) Let 𝑢, 𝑣 and 𝑤 be arbitrary 𝑛-
dimensional vectors. Then

(a) 𝑢 ⋅ 𝑢 ≥ 0 with 𝑢 ⋅ 𝑢 = 0 if and only if 𝑢 is the zero vector,
(b) 𝑢 ⋅ 𝑣 = 𝑣 ⋅ 𝑢,
(c) (𝑢 + 𝑣) ⋅ 𝑤 = 𝑢 ⋅ 𝑤 + 𝑣 ⋅ 𝑤,
(d) (𝛼𝑢) ⋅ 𝑣 = 𝛼(𝑢 ⋅ 𝑣).

The proofs are straightforward extensions of the proofs in the
2-dimensional case.

We relied heavily on geometric arguments when discussing 2- and 3-
dimensional vector spaces. For instance, the proof that the dot product of
two 2-dimensional unit vectors is the cosine of the angle between them made
direct use of geometric arguments. But what geometric interpretations can
we give to ideas such as the distance between two 𝑛-dimensional points and
the angle between 𝑛-dimensional vectors when 𝑛 > 3? We are not going
to try to give literal geometric interpretations to such concepts in higher-
dimensional spaces, but it turns out that results like the Triangle Inequality
and the Law of Cosines still hold, and that we can still usefully make use
of geometric intuition gained from 2- and 3-dimensional spaces.

As an example, suppose we extend the formulas for the geometric dis-
tance between two points in ℝ3 to ℝ𝑛 in the “obvious way”. Does

‖𝑢 − 𝑣‖ = √(𝑢1 − 𝑣1)2 + (𝑢2 − 𝑣2)2 +⋯+ (𝑢𝑛 − 𝑣𝑛)2 (4.25)

have a meaningful interpretation as the distance between two 𝑛-dimensional
vectors 𝑢 and 𝑣 when 𝑛 > 3? Can we interpret

‖𝑢‖ = √𝑢2
1 + 𝑢2

2 +⋯+ 𝑢2𝑛 (4.26)

as the “magnitude” of an 𝑛-dimensional vector when 𝑛 > 3?
The answer is yes, in the sense that the “distance” concept given by

(4.25) can be shown to share all of the essential properties of geometric
distance in 2- and 3-dimensions, namely: (i) it is never negative, (ii) the
distance from 𝑢 to 𝑣 is the same as the distance from 𝑣 to 𝑢, and (iii) it
satisfies the Triangle Inequality. This means that we can treat (4.25) very
much like a “distance” between 𝑛-dimensional points, even if we cannot
literally measure this distance with a ruler. Likewise, ‖𝑢‖ can be interpreted
as the “magnitude” or “norm” of the vector 𝑢.
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The non-negativity and symmetry properties (i) and (ii) obviously hold.
The key to showing that the Triangle Inequality (iii) also holds in ℝ𝑛 lies
in the Cauchy-Schwarz Inequality. Earlier we derived this inequality for
2-dimensional vectors using geometric arguments. It turns out that there
is a purely algebraic proof that does not rely on geometric arguments at all,
and which holds for general 𝑛-dimensional vector spaces.

Theorem 4.2 (The Cauchy-Schwarz Inequality) For any two 𝑛-
dimensional vectors 𝑢 and 𝑣, we have

|𝑢 ⋅ 𝑣| ≤ ‖𝑢‖ ‖𝑣‖ . (4.27)

Equality holds if and only if 𝑢 = 𝛼𝑣 or one of the vectors is a zero vector.

Proof:  If one of the vectors is a zero vector, then (4.27) obviously holds
trivially as an equality. If 𝑢 = 𝛼𝑣, then |𝑢 ⋅ 𝑣| = |𝛼𝑣 ⋅ 𝑣| = |𝛼|‖𝑣‖2 and
‖𝑢‖ ‖𝑣‖ = |𝛼|‖𝑣‖2, so again (4.27) holds with equality. Now suppose neither
𝑢 or 𝑣 is a zero vector, and that 𝑢 ≠ 𝛼𝑣 for any 𝛼. Then we have

0 < (𝑢 − 𝛼𝑣) ⋅ (𝑢 − 𝛼𝑣) = 𝑢 ⋅ 𝑢 − 2𝛼𝑢 ⋅ 𝑣 + 𝛼2𝑣 ⋅ 𝑣 . (4.28)

The inequality (4.28) holds for all 𝛼. Evaluating it at the particular value

𝛼 = 𝑢 ⋅ 𝑣
𝑣 ⋅ 𝑣 ,

we get 0 < 𝑢 ⋅ 𝑢 − 2𝑢 ⋅ 𝑣
𝑣 ⋅ 𝑣 𝑢 ⋅ 𝑣 + (𝑢 ⋅ 𝑣)2

(𝑣 ⋅ 𝑣)2 𝑣 ⋅ 𝑣 = 𝑢 ⋅ 𝑢 − (𝑢 ⋅ 𝑣)2
𝑣 ⋅ 𝑣 . Rearranging

this inequality gives
(𝑢 ⋅ 𝑣)2 < (𝑢 ⋅ 𝑢)(𝑣 ⋅ 𝑣) .

Taking square root gives us our desired result.
We use the Cauchy-Schwarz inequality to show that the distance mea-

sure (4.25) satisfies the Triangle Inequality.

Theorem 4.3 (The Triangle Inequality) For any two 𝑛-dimensional vectors
𝑢 and 𝑣, we have

‖𝑢 − 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖ .
Proof:  We first note that

‖𝑢 − 𝑣‖2 = (𝑢 − 𝑣) ⋅ (𝑢 − 𝑣) = 𝑢 ⋅ 𝑢 − 2𝑢 ⋅ 𝑣 + 𝑣 ⋅ 𝑣 = ‖𝑢‖2 − 2𝑢 ⋅ 𝑣 + ‖𝑣‖2 .

Since 𝑢 ⋅ 𝑣 ≤ |𝑢 ⋅ 𝑣| ≤ ‖𝑢‖ ‖𝑣‖, the largest value on the RHS occurs when
𝑢 ⋅ 𝑣 = −‖𝑢‖ ‖𝑣‖, therefore

‖𝑢 − 𝑣‖2 ≤ ‖𝑢‖2 + 2‖𝑢‖ ‖𝑣‖ + ‖𝑣‖2 = (‖𝑢‖ + ‖𝑣‖)2 .

Taking square roots gives us the desired result.
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Let 𝑥, 𝑦 and 𝑧 be any three points in 𝑛-dimensional space. Setting
𝑢 = 𝑥 − 𝑦 and 𝑣 = 𝑧 − 𝑦, we get

‖𝑥 − 𝑧‖ ≤ ‖𝑥 − 𝑦‖ + ‖𝑧 − 𝑦‖ .
The “distance” between 𝑥 and 𝑧 is no greater than the sum of the distances
between 𝑥 and 𝑦, and 𝑦 and 𝑧.

For ℝ2 and ℝ3 we derived the Law of Cosines 𝑢⋅𝑣 = ‖𝑢‖ ‖𝑣‖ cos 𝜃 geomet-
rically, and then obtained the Cauchy-Schwarz inequality from it. Here we
derived the Cauchy-Schwarz inequality 𝑢 ⋅ 𝑣 ≤ ‖𝑢‖ ‖𝑣‖ directly, without ap-
pealing to geometric arguments. Is there a Law of Cosines in 𝑛-dimensions?
Can we even talk about the angle between two 𝑛-dimensional vectors when
𝑛 > 3? If we take advantage of the fact that

−1 ≤ 𝑢 ⋅ 𝑣
‖𝑢‖ ‖𝑣‖ ≤ 1 ,

we can take the bold step of defining the angle between two 𝑛-dimensional
vectors to be value 𝜃 ∈ [0, 𝜋] such that

cos 𝜃 = 𝑢 ⋅ 𝑣
‖𝑢‖ ‖𝑣‖ or 𝜃 = cos−1 ( 𝑢 ⋅ 𝑣

‖𝑢‖ ‖𝑣‖) .

This provides a notion of perpendicularity for 𝑛-dimensional vectors. We
say that two 𝑛-dimensional vectors 𝑢 and 𝑣 are orthogonal if 𝑢 ⋅ 𝑣 = 0 (we
reserve the word ‘perpendicular’ for the 2- and 3-dimensional cases).

Given a set of 𝑛-dimensional vectors, we can ask if the vectors span
the entire ℝ𝑛 space, or a lower dimensional vector subspace of ℝ𝑛. For
instance, the vectors 𝑢1 = (1, 2, 4, 3) and 𝑣1 = (2, 4, 8, 6) span only a one-
dimensional “line” in ℝ4, since 𝑣1 is a multiple of 𝑢1, and so every linear
combination of 𝑢1 and 𝑣1 is also a multiple of 𝑢1. As another example, the
vectors 𝑢2 = (1, 0, 0, 0) and 𝑣2 = (0, 1, 0, 0) span a two-dimensional “plane”
in ℝ4. In order to span the entire ℝ4 space, we need at least four linearly
independent vectors, i.e., four vectors 𝑢1, 𝑢2, 𝑢3 and 𝑢4 such that

𝑐1𝑢1 + 𝑐2𝑢2 + 𝑐3𝑢3 + 𝑐4𝑢4 = 0 ⇒ 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 0 .
One question is how to determine the dimension of the subspace spanned
by a set of vectors. We discuss this briefly in the next section.

Finally, we note that up to now we have treated vectors as simply an
ordered collection of 𝑛 numbers, with no “shape” to it. Sometimes it is
useful to put a shape to the vector. For instance, we call 𝑢 in (4.29) a
column vector, and 𝑣 in (4.29) a row vector

𝑢 =
⎡
⎢⎢
⎣

𝑢1
𝑢2
⋮
𝑢𝑛

⎤
⎥⎥
⎦

, 𝑣 = [𝑣1 𝑣2 ⋯ 𝑣𝑛] . (4.29)
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It does not matter for our discussion if the vector is shaped or not. In the
next section we will use row and column vectors explicitly, but the shape
does not change any of the concepts we have discussed so far.

4.3.1 Exercises
Ex. 4.8 Let {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1 be a sample of 𝑛 observations on two variables. The
sample correlation between 𝑥𝑖 and 𝑦𝑖 is

𝑟𝑥𝑦 = ∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

√∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2√∑𝑛

𝑖=1(𝑦𝑖 − 𝑦)2

where 𝑥 = 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖 and 𝑦 = 1
𝑛 ∑𝑛

𝑖=1 𝑦𝑖.
(a) Explain why it must be that −1 ≤ 𝑟𝑥𝑦 ≤ 1. Hint: Let

𝑢 = (𝑥1 − 𝑥, 𝑥2 − 𝑥,… , 𝑥𝑛 − 𝑥) and 𝑣 = (𝑦1 − 𝑦, 𝑦2 − 𝑦,… , 𝑦𝑛 − 𝑦) .

(b) What is the angle between the vectors 𝑢 and 𝑣 as defined in the hint for
part (a) if (i) 𝑟𝑥𝑦 = 1, (ii) 𝑟𝑥𝑦 = 0, (iii) 𝑟𝑥𝑦 = −1?

Ex. 4.9 Let 𝑢 and 𝑣 be 𝑛-dimensional vectors. Find a scalar 𝛼 and a vector 𝑤
orthogonal to 𝑣 such that

𝑢 = 𝛼 𝑣
‖𝑣‖ + 𝑤 .

Find an expression for 𝛼𝑣/‖𝑣‖. Illustrate this result for the special case 𝑛 = 2.
Remark: the vector 𝛼𝑣/‖𝑣‖ is called the projection of 𝑢 onto 𝑣 (or more accurately,
the subspace spanned by 𝑣).

Ex. 4.10 Let 𝑢 = (𝑢1, 𝑢2) and 𝑣 = (𝑣1, 𝑣2). Show that the area of the parallelo-
gram formed by these two vectors is |𝑢1𝑣2 − 𝑢2𝑣1|.

4.4 Linear Systems of Equations in Three or more Unknowns
In the previous chapter we discussed solving systems of equations in two
unknowns. In this section we extend the discussion to systems of equations
in three or more unknowns, and connect the problem of solving systems of
linear equations with the vector space concept.

4.4.1 Linear Systems in Three Unknowns
Suppose we have two linear equations in three unknowns 𝑥, 𝑦 and 𝑧:

𝑎11𝑥 + 𝑎12𝑦 + 𝑎13𝑧 = 𝑏1
𝑎21𝑥 + 𝑎22𝑦 + 𝑎23𝑧 = 𝑏2

(4.30)

and we wish to solve this system, i.e., we wish to find all points (𝑥, 𝑦, 𝑧)
that satisfy the two equations simultaneously. We know that the graph of
each of the two equations in (4.30) is a plane in 3-dimensional Cartesian
space. With two planes, there are three possibilities: the planes are parallel
in which case there are no solutions; the planes coincide in which case every
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point on the (common plane) is a solution; the planes intersect in which
case every point on the line of intersection is a solution. So there are either
no solutions, or an infinite number of solutions. In the latter case, the
infinite solutions either make up a plane, or a line in 3-dimensional space.

Example 4.1 The following system has infinitely many solutions repre-
sented by a single line:

2𝑥 − 3𝑦 + 𝑧 = 0
𝑥 + 𝑦 + 𝑧 = 1 . (4.31)

We solve this using Gaussian elimination:

[ 2 −3 1 0
1 1 1 1 ] −−−−−−−→

[2]=[2]− 1
2 [1]

[
2 −3 1 0
0 5/2 1

2 1 ] .

In each rectangular array, each column on the left of the vertical line
represents the coefficients on 𝑥, 𝑦, and 𝑧 respectively. The entries on the
right of the vertical line are the constants on the right-hand-side of the
system. The top-left entry is the pivot for 𝑥, and must be non-zero; if it is
zero, re-order the equations so the top-left entry is not zero. Use the 𝑥-pivot
and row operation to create zeros underneath it; in this case, subtract 1/2
of the first row from the second row. If the (2, 2)th element is non-zero, it
becomes the 𝑦-pivot. There is no 𝑧-pivot; it is a “free” variable.

Let 𝑧 be some “parameter” 𝑠. Then we have

5
2𝑦 + 1

2𝑠 = 1 or 𝑦 = 2
5 − 1

5𝑠 .

The first row represents the equation 2𝑥−3𝑦+𝑧 = 0. Substituting in 𝑧 = 𝑠
and 𝑦 = 2

5 − 1
5𝑠 gives

𝑥 = 3
5 − 4

5𝑠 .

The solution is the line comprising the points (𝑥, 𝑦, 𝑧) = ( 35 − 4
5𝑠, 2

5 − 1
5𝑠, 𝑠).

The next example is similar, except that the pivots are associated with
the first (𝑥) and third (𝑧) variables.

Example 4.2 Consider the system

2𝑥 + 2𝑦 + 𝑧 = 2
𝑥 + 𝑦 + 𝑧 = 0 . (4.32)

Solving by Gaussian elimination gives

[ 2 2 1 2
1 1 1 0 ] −−−−−−−→

[2]=[2]− 1
2 [1]

[
2 2 1 2
0 0 1/2 −1 ] .
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The (2, 2)th element in the array on the right is zero, so the (2, 3)th element
becomes the second pivot. There is no 𝑦-pivot, 𝑦 is the “free” variable. The
second row says

𝑧
2 = −1 or 𝑧 = −2 .

Let 𝑦 be some “parameter” 𝑠. The first row represents the equation 2𝑥 +
2𝑦 + 𝑧 = 2. Substituting in 𝑦 = 𝑠 and 𝑧 = −2 gives

𝑥 = 1 − 𝑠 + 1 = 2 − 𝑠 .

The solutions are the points (𝑥, 𝑦, 𝑧) = (2−𝑠, 𝑠,−2), which makes up a line
in 3-dimensional Cartesian space.

In Example 4.1 and Example 4.2 there are three variables and two pivots,
leading to one free variable, so the solutions are the points that comprise
a line. If the two planes representing the equations coincide, then every
point on the common plane will be a solution. There will only be one pivot,
and the second row will reduce to 0 = 0. If the two planes are parallel,
there will again only be one pivot, but the second equation reduces to a
contradiction .

With three equations in three unknowns

𝑎11 𝑥 + 𝑎12 𝑦 + 𝑎13 𝑧 = 𝑏1
𝑎21 𝑥 + 𝑎22 𝑦 + 𝑎23 𝑧 = 𝑏2
𝑎31 𝑥 + 𝑎32 𝑦 + 𝑎33 𝑧 = 𝑏3

(4.33)

we have three planes, and there are several possibilities: (a) the three equa-
tions intersect at a single point (imagine two of the planes intersecting at
a line, and the third plane cutting this line). Then there is a single point
that satisfies all three equations, that point being the solution; (b) the three
equations could all intersect at a line — this can happen if two of the planes
intersect at a line and the third plane is either coincident with one of the
previous two planes, or is not coincident with either, yet cuts the first two
planes exactly along their line of intersection. In this case the solution is
the common line of intersection; (c) all three planes coincide, in which case
the solution are all the points on the common plane, (d) the three planes
do not all coincide, and do not all intersect at a common line or point.

For (a), Gaussian elimination will lead to three pivots. Three unknowns
and three pivots lead to a unique solution. In the case of (b), there will
be two pivots and no contradiction; the last row will be 0 = 0. Three
unknowns, two pivots, no contradiction implies the solutions make up a
line. For (c), there will be one pivot an no contradictions, and the last two
rows will be 0 = 0. For (d), there will be fewer than three pivots, and a
contradiction.
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Example 4.3 Consider the system

2 𝑥 + 2 𝑦 + 4 𝑧 = 4
3𝑥 + 𝑦 + 2 𝑧 = 2
5𝑥 + 2 𝑦 + 𝑧 = 7 .

(4.34)

Solving by Gaussian elimination gives

⎡
⎢
⎣

2 2 4 4
3 1 2 2
5 2 1 7

⎤
⎥
⎦

−−−−−−−→
[2]=[2]− 3

2 [1]

⎡
⎢
⎣

2 2 4 4
0 −2 −4 −4
5 2 1 7

⎤
⎥
⎦

−−−−−−−→
[3]=[3]− 5

2 [1]

⎡
⎢
⎣

2 2 4 4
0 -2 −4 −4
0 −3 −9 −3

⎤
⎥
⎦

−−−−−−−→
[3]=[3]+ 3

2 [1]

⎡⎢⎢
⎣

2 2 4 4
0 -2 −4 −4
0 0 -3 3

⎤⎥⎥
⎦
.

Substituting backwards, you can easily show that the unique solution is
(𝑥, 𝑦, 𝑧) = (0, 4,−1).
Example 4.4 The system

𝑥 + 𝑦 + 4 𝑧 = 4
3𝑥 + 𝑦 + 2 𝑧 = 2
2𝑥 + 𝑦 + 3 𝑧 = 3

(4.35)

has an infinite number of solutions, forming a (1-dimensional) line. Gaus-
sian elimination, using the row operations [2] = [2] − 3[1], [3] = [3] − 2[1]
and [3] = [3] − 1

2 [2] yields

⎡
⎢
⎣

1 1 4 4
3 1 2 2
2 1 3 3

⎤
⎥
⎦

⟶ ⎡
⎢
⎣

1 1 4 4
0 –2 −10 −10
0 0 0 0

⎤
⎥
⎦
.

There is no pivot associated with variable 𝑧. Assign a free parameter 𝑠 to
𝑧. Then second row is −2𝑦 − 10𝑧 = −10, which gives 𝑦 = 5 − 5𝑠. The first
row is the equation 𝑥+𝑦+4𝑧 = 4. Substituting for 𝑦 and 𝑧 gives 𝑥 = 𝑠−1.
The solutions lie on the line (𝑥, 𝑦, 𝑧) = (𝑠 − 1, 5 − 5𝑠, 𝑠).
Example 4.5 Consider the system

𝑥 + 𝑦 + 4 𝑧 = 4
3𝑥 + 𝑦 + 2 𝑧 = 2
2𝑥 + 𝑦 + 3 𝑧 = 4 .

(4.36)

Using exactly the same elimination steps as in Example 4.4, we get



August 31, 2024 18:18 book-9x6 Baydur-Preve-Tay index page 106

106 Mathematics and Programming for the Quantitative Economist

⎡
⎢
⎣

1 1 4 4
3 1 2 2
2 1 3 4

⎤
⎥
⎦

⟶ ⎡
⎢
⎣

1 1 4 4
0 –2 −10 −10
0 0 0 1

⎤
⎥
⎦
.

There is therefore no solution.

4.4.2 Larger Systems
The general ideas carry over to larger systems (four equations in three
unknowns, systems with four or more unknowns, …) even though it is harder
to describe the solutions geometrically. Suppose you have a system of 𝑚
equations in 𝑛 unknowns, as in:

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚 .

(4.37)

If 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑚 = 0, we call this a homogeneous system.
To use Gaussian elimination to solve this system, collect all of the con-

stants into a rectangular array as in

⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛 𝑏1
𝑎21 𝑎22 … 𝑎2𝑛 𝑏2
⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛 𝑏𝑚

⎤
⎥⎥
⎦
.

The rectangular block on the left of the vertical line is called the “coefficient
matrix”. The entire rectangular array is called the “augmented matrix”.
Then carry out Gaussian elimination on the augmented matrix so as to
reduce the coefficient matrix (the left part of the augmented matrix) into
row echelon form (REF), meaning that

• all zero rows are at the bottom,
• the first non-zero item in each row (the “leading term”) is to the right

of the leading terms of all of the rows above.
This is what we have done in all our earlier Gaussian elimination exam-

ples. The leading terms in the REF of the coefficient matrix are the pivots.
Columns without pivots correspond to “free variables”. The final solution
is obtained by backward substitution, assigning a “parameter” to each of
the “free” variables. There will be a unique solution (which may be the
trivial solution if the system is homogeneous) if there are as many pivots
as there are variables (columns) in the augmented matrix and no contradic-
tions. If there are fewer pivots than number of variables, then there will be
an infinite number of solutions, the dimension of the solution being equal
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to the difference between the number of variables and the number of pivots
(i.e., the number of “free variables”).

Of course, any fully zero rows in the REF of the coefficient matrix on
the left must be matched with zeros on the right, otherwise there are no
solutions (these would be the “contradictions” found in earlier examples
where there were no solutions).

The following is an example of a system of four linear equations in four
unknowns, solved by Gaussian elimination. The solution also differs from
previous examples in that we require swapping equations at some stage.

Example 4.6 Consider the system

𝑤 + 𝑥 + 2𝑦 + 2𝑧 = 1
𝑤 + 𝑥 + 2𝑦 + 𝑧 = 2

2𝑤 + 3𝑥 + 3𝑦 + 𝑧 = 1
𝑤 + 3𝑥 + 𝑦 + 2𝑧 = 1 .

Solving by Gaussian Elimination:

⎡
⎢
⎢
⎣

1 1 2 2 1
1 1 2 1 2
2 3 3 1 1
1 3 1 2 1

⎤
⎥
⎥
⎦

−−−−−−→
[2]=[2]− [1]
[3]=[3]−2[1]
[4]=[4]− [1]

⎡
⎢
⎢
⎣

1 1 2 2 1
0 0 0 −1 1
0 1 −1 −3 −1
0 2 −1 0 0

⎤
⎥
⎥
⎦

The next step would be to use the (2, 2)th element to eliminate the (3, 2)th
and (4, 2)th elements, but we can’t do this, since the (2, 2)th element is
zero. There is no pivot there. This situation can be dealt with by swapping
the order of the equations. We’ll swap the second and fourth rows:

⎡
⎢
⎢
⎣

1 1 2 2 1
0 0 0 −1 1
0 1 −1 −3 −1
0 2 −1 0 0

⎤
⎥
⎥
⎦

−−−−→
[2]↔[4]

⎡
⎢
⎢
⎣

1 1 2 2 1
0 2 −1 0 0
0 1 −1 −3 −1
0 0 0 −1 1

⎤
⎥
⎥
⎦

.

Now continuing with elimination gives

⎡
⎢
⎢
⎣

1 1 2 2 1
0 2 −1 0 0
0 1 −1 −3 −1
0 0 0 −1 1

⎤
⎥
⎥
⎦

−−−−−−−→
[3]=[3]− 1

2 [2]

⎡
⎢
⎢
⎢
⎣

1 1 2 2 1
0 2 −1 0 0
0 0 –1/2 −3 −1
0 0 0 –1 1

⎤
⎥
⎥
⎥
⎦

.

There are four pivots, so there is a unique solution. You should be able to
find by substitution that the solution is (𝑤, 𝑥, 𝑦, 𝑧) = (−17, 4, 8,−1).
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Example 4.7 Consider the system of three equations in four unknowns

𝑤 + 𝑥 + 2𝑦 + 2𝑧 = 1
𝑤 + 𝑥 + 2𝑦 + 𝑧 = 2

2𝑤 + 2𝑥 + 3𝑦 + 𝑧 = 1 .

Solving by Gaussian Elimination:

⎡
⎢
⎣

1 1 2 2 1
1 1 2 1 2
2 2 3 1 1

⎤
⎥
⎦

−−−−−−→
[2]=[2]− [1]
[3]=[3]−2[1]

⎡
⎢
⎣

1 1 2 2 1
0 0 0 −1 1
0 0 −1 −3 −1

⎤
⎥
⎦
.

We cannot find a pivot for the second column. Moving on to the third
column, we find that we have to swap the second and third rows in order
to get a pivot. Doing so we find we get a REF without further elimination:

⎡
⎢
⎣

1 1 2 2 1
0 0 0 −1 1
0 0 −1 −3 −1

⎤
⎥
⎦

−−−−→
[3] ↔ [2]

⎡⎢⎢
⎣

1 1 2 2 1
0 0 –1 −3 −1
0 0 0 –1 1

⎤⎥⎥
⎦
.

The last row is −𝑧 = 1, so 𝑧 = −1. Substituting into −𝑦 − 3𝑧 = −1 gives
𝑦 = 4. Assign a parameter 𝑠 to 𝑥. The first row says 𝑤 + 𝑥 + 2𝑦 + 2𝑧 = 1.
Substituting our solutions (and parameters) obtained to this point gives
𝑤 = 1 − 𝑠 − 2(4) − 2(−1) = −5 − 𝑠. The solutions are (𝑤, 𝑥, 𝑦, 𝑧) =
(−5 − 𝑠, 𝑠, 4,−1) which forms a “line” in ℝ4.

Note that the row echelon form for a system of equations is not unique.
If you start with the same equations, but arranged in a different order, you
will get a different row echelon form. The ordering of the equations do not
change the system, of course, and the solution that you get at the end will
be the same.

Notice finally that in our examples, the number of free variables in our
solution is the number of variables 𝑛 minus the number of pivots 𝑟 found
when the coefficient matrix is reduced to row echelon form.

4.4.3 Systems of Linear Equations and Vector Spaces
There is a strong and important connection between systems of linear equa-
tions and the vector space concept. Consider the system of two equations
in two unknowns

𝑎11𝑥 + 𝑎12𝑦 = 𝑏1
𝑎21𝑥 + 𝑎22𝑦 = 𝑏2 .

(4.38)

Earlier we described the solution of such a system as the intersection of
two lines. If the two lines intersect, there is a unique solution. If the two
lines are parallel, there are no solutions. If the lines coincide, there are an
infinite number of solutions.
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An alternative view is to think of a system of equations in terms of
vectors. In view of what is to come in later chapters, re-write vectors into
“column vector” form, i.e., write a vector

𝑎1 = (𝑎11, 𝑎21) as 𝑎1 = [𝑎11𝑎21
] .

Then write (4.38) as

[𝑎11𝑎21
] 𝑥 + [𝑎12𝑎22

] 𝑦 = [𝑏1𝑏2
] , (4.39)

or
𝑎1𝑥 + 𝑎2𝑦 = 𝑏

Then solving the system means finding the values 𝑥 and 𝑦 so that the linear
combination 𝑎1𝑥 + 𝑎2𝑦 results in the vector 𝑏. If 𝑎1 and 𝑎2 span the whole
ℝ2 space, then we must be able to obtain 𝑏 as a linear combination of 𝑎1
and 𝑎2. If there are no solutions or an infinite number of solutions, then
it must be that 𝑎1 and 𝑎2 does not span the entire space. If this is the
case, then there are no solutions if 𝑏 lies outside of the subspace spanned by
𝑎1 and 𝑎2, and there are infinitely many solutions if 𝑏 lies in the subspace
spanned by 𝑎1 and 𝑎2.

We can think of the general system with 𝑚 equations in 𝑛 unknowns

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

(4.40)

in a similar way, and write (4.40) as

⎡
⎢⎢
⎣

𝑎11
𝑎21
⋮

𝑎𝑚1

⎤
⎥⎥
⎦
𝑥1 +

⎡
⎢⎢
⎣

𝑎12
𝑎22
⋮

𝑎𝑚2

⎤
⎥⎥
⎦
𝑥2 +⋯+

⎡
⎢⎢
⎣

𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛

⎤
⎥⎥
⎦
𝑥𝑛 =

⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑚

⎤
⎥⎥
⎦

(4.41)

or
𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 = 𝑏

where 𝑎1, 𝑎2, …, 𝑎𝑛 and 𝑏 are the 𝑚-dimensional column vectors in (4.41).
Then we see that finding a solution to the system (4.40) is equivalent to find-
ing a 𝑛-dimensional vector 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑛) such that (4.41) is satisfied.
The 𝑎1, 𝑎2,… , 𝑎𝑛 span a certain subspace of ℝ𝑚. If 𝑏 is in this subspace,
then there will be at least one solution. If not, there are no solutions.

There is much much more to the connection between vector spaces and
solving systems of equations. We will explore these connections and their
implications in greater detail in Chapter 8 and Chapter 10.
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4.4.4 Exercises
Ex. 4.11 We learnt in Section 2.1.5 that system (i) below has an infinite number
of solutions, whereas system (ii) has no solution:

(i)
2𝑥 + 𝑦 = 3
4𝑥 + 2𝑦 = 6 (ii)

2𝑥 + 𝑦 = 3
4𝑥 + 2𝑦 = 4 .

Write these two systems in vector form, where the vector containing the constants
on the RHS of the system is expressed as a linear combination of two vectors, with
weights 𝑥 and 𝑦. Explain using the language of vectors why (i) has an infinite
number of solutions whereas (ii) has no solution.

Ex. 4.12 Describe the graphs of the two equations in the system

2𝑥 + 2𝑦 + 𝑧 = 2
4𝑥 + 4𝑦 + 2𝑧 = 0 .

Show that Gaussian elimination leads to a contradiction.

Ex. 4.13 Solve the following system by Gaussian elimination:

𝑤 + 𝑥 + 2𝑦 + 2𝑧 = 1
𝑤 + 𝑥 + 2𝑦 + 𝑧 = 2

2𝑤 + 2𝑥 + 4𝑦 + 3𝑧 = 3
𝑤 + 3𝑥 + 𝑦 + 2𝑧 = 1 .
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4.7 Solutions to Exercises
Ex. 4.1: (a) 𝑢 ⋅ 𝑣 = (𝑥1𝑥2, 𝑦1𝑦2) = (𝑥2𝑥1, 𝑦2𝑦1) = 𝑣 ⋅ 𝑢.
(b) (𝑥1+𝑥2, 𝑦1+𝑦2)⋅(𝑥3, 𝑥3) = ((𝑥1+𝑥2)𝑥3, (𝑦1+𝑦2)𝑦3) = (𝑥1𝑥3+𝑥2𝑥3, 𝑦1𝑦3+𝑦2𝑦3) =
(𝑥1𝑥3, 𝑦1𝑦3) + (𝑥2𝑥3, 𝑦2𝑦3).
(c) (𝛼𝑥1, 𝛼𝑦1) ⋅ (𝑥2, 𝑦2) = (𝛼𝑥1𝑥2, 𝛼𝑦1𝑦2) = 𝛼(𝑥1𝑥2, 𝑦1𝑦2).
(d) (𝑢 + 𝑣) ⋅ (𝑤 + 𝑧) = 𝑢 ⋅ (𝑤 + 𝑧) + 𝑣 ⋅ (𝑤 + 𝑧) = 𝑢 ⋅ 𝑤 + 𝑣 ⋅ 𝑤 + 𝑢 ⋅ 𝑧 + 𝑣 ⋅ 𝑧.
Ex. 4.2: We have

(cos𝛼 − cos𝛽)2 + (sin𝛼 − sin𝛽)2 = (cos(𝛼 − 𝛽) − 1)2 + sin2(𝛼 − 𝛽) (4.42)

Expanding the LHS of (4.42) and using the fact that cos2 𝛾 + sin2 𝛾 = 1 gives

cos2 𝛼 − 2 cos𝛼 cos𝛽 + cos2 𝛽 + sin2 𝛼 − 2 sin𝛼 sin𝛽 + sin2 𝛽
= 2 − 2 cos𝛼 cos𝛽 − 2 sin𝛼 sin𝛽 .

Likewise, the RHS of (4.42) gives

cos2(𝛼 − 𝛽) − 2 cos(𝛼 + 𝛽) + 1 + sin2(𝛼 − 𝛽) = 2 − 2 cos(𝛼 − 𝛽) .

Equating and simplifying the expanded and simplified versions of the LHS and
RHS of (4.42) gives the subtraction formula for cosines.
Ex. 4.3: ‖𝑢 + 𝑣‖2 = (𝑢 + 𝑣) ⋅ (𝑢 + 𝑣) = 𝑢 ⋅ 𝑢 + 2𝑢 ⋅ 𝑣 + 𝑣 ⋅ 𝑣 = ‖𝑢‖2 + 2𝑢 ⋅ 𝑣 + ‖𝑣‖2.
Ex. 4.4: When point 𝐵 lies on the line segment joining points 𝐴 and 𝐶.
Ex. 4.5: To find the vector equation

(𝑥, 𝑦) = (𝑢𝑥, 𝑢𝑦) + 𝛼(𝑤𝑥, 𝑤𝑦) , 𝛼 ∈ ℝ .

of a line given by 𝑦 = 2 + 3𝑥, we need a point (𝑢𝑥, 𝑢𝑦) that lies on the line, and
a vector (𝑤𝑥, 𝑤𝑦) that is parallel to the line. We can pick any point on the line;
the 𝑦-intercept (0, 2) seems convenient. The slope of the line is 𝑤𝑦/𝑤𝑥 is 3, so we
can choose (𝑤𝑥, 𝑤𝑦) = (1, 3). A vector equation of the line is then

(𝑥, 𝑦) = (0, 2) + 𝛼(1, 3) , 𝛼 ∈ ℝ .

Ex. 4.6: Given 𝑢 = (1, 1, 1), 𝑣 = (1,−2, 1) and 𝑤 = (2, 1, 0), we have ‖𝑢‖ =
√
3,

‖𝑣‖ =
√
6 and ‖𝑤‖ =

√
5, so 𝑣 has the largest norm, or magnitude. Since 𝑢 ⋅ 𝑣 =

1 − 2 + 1 = 0, 𝑢 ⋅ 𝑤 = 2 + 1 + 0 = 3 and 𝑣 ⋅ 𝑤 = 2 − 2 + 0 = 0, the pairs {𝑢, 𝑣} and
{𝑣, 𝑤} are perpendicular, whereas the vectors {𝑢,𝑤} are not perpendicular. If 𝜃
is the angle between 𝑢 and 𝑤, then cos 𝜃 = 3/(

√
3
√
5) =

√
3/

√
5, so 𝜃 ≈ 0.685.

Ex. 4.7: Since 𝐴, 𝐵 and 𝐶 are points on the plane, the vectors 𝐴−𝐵 = (1, 2, 1)
and 𝐴 − 𝐶 = (3,−1, 2) lie on the plane. Since these two vectors are not linear
dependent (one is not a multiple of the other), they completely identify the plane.
To show the (5, 1,−7) is the normal vector to the plane, we only need to show
that it is orthogonal to 𝐴 − 𝐵 and 𝐴 − 𝐶, which it is, since (1, 2, 1) ⋅ (5, 1,−7) =
5 + 2 − 7 = 0 and (3,−1, 2) ⋅ (5, 1,−7) = 15 − 1 − 14 = 0. Now let (𝑥, 𝑦, 𝑧) be any
point on the plane. Then (𝑥, 𝑦, 𝑧) − (1, 0, 3) is orthogonal to (5, 1,−7). (We could
have picked any of the three points; we chose B). That is,

(5, 1,−7) ⋅ (𝑥 − 1, 𝑦, 𝑧 − 3) = 5𝑥 + 𝑦 − 7𝑧 + 16 = 0 .
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𝑤. Let 𝐴 be the area. Then

𝐴2 = ‖𝑣‖‖𝑤‖ = (𝑣 ⋅ 𝑣)(𝑤 ⋅ 𝑤) = (𝑣 ⋅ 𝑣) [(𝑢 − 𝑢 ⋅ 𝑣
𝑣 ⋅ 𝑣 𝑣) ⋅ (𝑢 − 𝑢 ⋅ 𝑣

𝑣 ⋅ 𝑣 𝑣)]

= (𝑣 ⋅ 𝑣)(𝑢 ⋅ 𝑢 − 2𝑢 ⋅ 𝑣
𝑣 ⋅ 𝑣 𝑢 ⋅ 𝑣 + (𝑢 ⋅ 𝑣)2

(𝑣 ⋅ 𝑣)2 𝑣 ⋅ 𝑣)

= (𝑣 ⋅ 𝑣)(𝑢 ⋅ 𝑢) − (𝑢 ⋅ 𝑣)2

= (𝑣21 + 𝑣22)(𝑢2
1 + 𝑢2

2) − (𝑢1𝑣1 + 𝑢2𝑣2)2

= 𝑢2
1𝑣21 + 𝑢2

1𝑣22 + 𝑢2
2𝑣21 + 𝑢2

2𝑣22 − 𝑢2
1𝑣21 − 2𝑢1𝑢2𝑣1𝑣2 − 𝑢2

2𝑣22
= 𝑢2

1𝑣22 + 𝑢2
2𝑣21 − 2𝑢1𝑢2𝑣1𝑣2

= (𝑢1𝑣2 − 𝑢2𝑣1)2

Therefore 𝐴 = |𝑢1𝑣2 − 𝑢2𝑣1|. The expression 𝑢1𝑣2 − 𝑢2𝑣1 is the determinant of
the matrix

[𝑢1 𝑣1
𝑢2 𝑣2

] .

We study determinants in more detail in Chapter 8.
Ex. 4.11: The two systems can be written as

(i) (2, 4)𝑥 + (1, 2)𝑦 = (3, 6) and (ii) (2, 4)𝑥 + (1, 2)𝑦 = (3, 4) .

The vectors (2, 4) and (1, 2) lie on the same line, and span only a one-dimension
subspace. The vector (3, 6) lies on this subspace, therefore we can find infinite
number of weights (𝑥, 𝑦) such that the equation in (i) holds. The vector (3, 4)
does not lie on the subspace spanned by the vectors (2, 4) and (1, 2), therefore we
cannot find weights (𝑥, 𝑦) such that the equation in (ii) holds.
Ex. 4.12: The graphs of the two equations in the system

2𝑥 + 2𝑦 + 𝑧 = 2
4𝑥 + 4𝑦 + 2𝑧 = 0 .

are parallel planes, one passes through the origin, and the vertical distance be-
tween the two plans is 2 units. Gaussian elimination leads to

2𝑥 + 2𝑦 + 𝑧 = 2
0 + 0 + 0 = −4 .

The second equation is a “contradiction”.
Ex. 4.13: You should find only three pivots (associated with variables 𝑤, 𝑥 and
𝑧) and no contradiction. A possible row echelon form is

⎡
⎢⎢⎢
⎣

1 0 5
2 0 3

0 2 −1 0 0
0 0 0 –1 1
0 0 0 0 0

⎤
⎥⎥⎥
⎦

.

The solution is (𝑤, 𝑥, 𝑦, 𝑧) = (3 − 5
2𝑠, 𝑠

2 , 𝑠, −1)




