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Chapter 10

Projections and Matrix Factorizations

In the first part of this chapter, we say more about left- and right-inverses,
and discuss the important concept of projections. The second part of this
chapter covers matrix factorizations, which is about writing a matrix as a
product of two or more matrices that have certain convenient structures.
We cover the LU decomposition, the QR decomposition, the eigendecompo-
sition and the singular value decomposition. The latter two decompositions
are especially useful in Statistics, Econometrics and Data Science, as they
reveal important insights about data matrices. We show how these factor-
izations can be computed in Python, and present several applications.

We begin with the idea of orthogonal matrices, which plays an important
role in these topics.

10.1 Orthogonal Matrices, Left and Right Inverses, Projections
We refer to vectors 𝑥 ∈ ℝ𝑛 as 𝑛-vectors. Recall that the inner product of
two 𝑛-vectors 𝑥 and 𝑦 is defined as

𝑥 ⋅ 𝑦 =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖 .

If 𝑥 and 𝑦 are column vectors, then 𝑥 ⋅ 𝑦 = 𝑥T𝑦. The norm of a vector 𝑥,
‖𝑥‖, is the square root of the inner product 𝑥 ⋅ 𝑥 = 𝑥T𝑥. The angle between
two vectors 𝑥 and 𝑦 is that value 𝜃 ∈ [0, 𝜋] such that 𝑥 ⋅ 𝑦 = ‖𝑥‖‖𝑦‖ cos 𝜃.
If 𝑥 ⋅ 𝑦 = 0, then 𝑥 and 𝑦 are orthogonal. If 𝑥 and 𝑦 are orthogonal unit
vectors, we say they are orthonormal.

10.1.1 Orthogonal Matrices
Matrices with orthonormal columns are called orthogonal matrices.1
That is, a 𝑛 × 𝑘 matrix

𝐴 = [𝑎1 𝑎2 … 𝑎𝑘]
where 𝑎𝑖, 𝑖 = 1, 2,…𝑘 are 𝑛-vectors, is an orthogonal matrix if

𝐴T𝐴 =
⎡
⎢⎢
⎣

𝑎T
1 𝑎1 𝑎T

1 𝑎2 … 𝑎T
1 𝑎𝑘

𝑎T
2 𝑎1 𝑎T

2 𝑎2 … 𝑎T
2 𝑎𝑘

⋮ ⋮ ⋱ ⋮
𝑎T
𝑘 𝑎1 𝑎T

𝑘 𝑎2 … 𝑎T
𝑘 𝑎𝑘

⎤
⎥⎥
⎦

= 𝐼𝑘 .

1It seems we ought to call matrices with orthonormal columns as orthonormal ma-
trices, but unfortunately this is not standard terminology. An orthogonal matrix is one
with orthonormal columns. There is no special name for matrices whose columns are
merely orthogonal, but not orthonormal.
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Another way of describing an orthogonal matrix is one whose transpose
is its left-inverse. Orthogonal matrices need not be square. If 𝐴 is orthogo-
nal and square, then 𝐴−1 = 𝐴T. The inverse of a square orthogonal matrix
is just its transpose. This also means that the transpose of a square or-
thogonal matrix is orthogonal, since 𝐼 = 𝐴𝐴−1 = 𝐴𝐴T. If 𝐴 is orthogonal,
square and symmetric, then

𝐴−1 = 𝐴T = 𝐴 .

A square orthogonal symmetric matrix is its own inverse!

Example 10.1 All of the following matrices are orthogonal:

𝐴1 = ⎡⎢
⎣

0 1 0
0 0 1
1 0 0

⎤⎥
⎦
, 𝐴2 = [cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃 ] , 𝐴3 = [1 0
0 −1] ,

𝐴4 = [
1√
2

1√
2

1√
2 − 1√

2
] , 𝐴5 =

⎡⎢⎢
⎣

1√
3

1√
2

1√
3 − 1√

2
1√
3 0

⎤⎥⎥
⎦
.

The orthogonal matrices 𝐴1 and 𝐴2 are square but not symmetric (unless
𝜃 is an integer multiple of 𝜋). We have 𝐴−1

𝑖 = 𝐴T
𝑖 ≠ 𝐴𝑖, 𝑖 = 1, 2. The

orthogonal matrices 𝐴3 and 𝐴4 are square and symmetric. We have 𝐴−1
𝑖 =

𝐴T
𝑖 = 𝐴𝑖, 𝑖 = 3, 4. The orthogonal matrix 𝐴5 is not square. We have

𝐴T
5 𝐴5 = 𝐼2, but 𝐴5𝐴T

5 ≠ 𝐼3.
Orthogonal matrices produce transformations that preserve the norms

of vectors and the angles between vectors. Suppose 𝐴 is orthogonal and
𝑦 = 𝐴𝑥. Then

‖𝑦‖ = (𝑦 ⋅ 𝑦)1/2 = (𝑥T𝐴T𝐴𝑥)1/2 = (𝑥T𝑥)1/2 = ‖𝑥‖ .

Furthermore, suppose 𝜃 ∈ [0, 𝜋] is the angle between 𝑥1 and 𝑥2, i.e., 𝜃
satisfies

cos 𝜃 = 𝑥1 ⋅ 𝑥2
‖𝑥1‖‖𝑥2‖

.

Then the angle 𝛼 ∈ [0, 𝜋] between 𝑦1 = 𝐴𝑥1 and 𝑦2 = 𝐴𝑥2 satisfies

cos𝛼 = 𝑦1 ⋅ 𝑦2
‖𝑦1‖‖𝑦2‖

= 𝑥T
1 𝐴T𝐴𝑥2
‖𝑥1‖‖𝑥2‖

= 𝑥1 ⋅ 𝑥2
‖𝑥1‖‖𝑥2‖

= cos 𝜃.

It follows that 𝛼 = 𝜃. Tranformations that preserve norms of vectors and
angles between vectors are rotations, reflections, and permutations of axes.
The matrix 𝐴1 is a permutation matrix. 𝐴2 is a rotation matrix (see
Ex. 10.1). The matrices 𝐴3 and 𝐴4 are reflection matrices. 𝐴5 involves
reflections and rotations from ℝ2 to the ℝ3 space.
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10.1.2 Left- and Right-Inverses
The transpose of an orthogonal matrix, which must have full column rank,
is its left-inverse. In fact, left-inverses exist for all matrices with full column
rank, orthogonal or not. Let 𝐴 be any 𝑛 × 𝑘 matrix with full column rank.
Full column rank ensures that (𝐴T𝐴)−1 exists. Then the fact that

(𝐴T𝐴)−1𝐴T𝐴 = 𝐼𝑘 (10.1)

shows that a (𝐴T𝐴)−1𝐴T is a left-inverse of 𝐴. In fact, we can construct
many left-inverses of 𝐴 if 𝑛 > 𝑘. If 𝑛 > 𝑘, then the null space 𝑁(𝐴T, 𝑛−𝑘 >
0) is non-trivial, and we can construct a 𝑘 × 𝑛 matrix 𝐶 whose rows are
vectors in 𝑁(𝐴T, 𝑛−𝑟 > 0). Such a matrix will satisfy 𝐶𝐴 = 0𝑘×𝑘, so then

((𝐴T𝐴)−1𝐴T +𝐶)𝐴 = (𝐴T𝐴)−1𝐴T𝐴+ 𝐶𝐴 = 𝐼𝑘 .

Example 10.2 Let

𝐴 = ⎡⎢
⎣

1 2
1 1
1 0

⎤⎥
⎦

, (𝐴T𝐴)−1𝐴T = [
− 1

6
1
3

5
6

1
2 0 − 1

2
] .

The null space of 𝐴T is the set of vectors 𝑦 = [𝑦1 𝑦2 𝑦3]
T such that

𝐴T𝑦 = [1 1 1
2 1 0]

⎡⎢
⎣

𝑦1
𝑦2
𝑦3
⎤⎥
⎦

= [00] .

This is the set of all vectors of the form [𝑠 −2𝑠 𝑠]T. Let

𝐶 = [𝑠 −2𝑠 𝑠
𝑡 −2𝑡 𝑡] for any 𝑠, 𝑡 ∈ ℝ.

Then all matrices of the form (𝐴T𝐴)−1𝐴T +𝐶 are left-inverses of 𝐴.
As we will see in the next section, (𝐴T𝐴)−1𝐴T turns out to be the most

important left-inverse of 𝐴, so we will use the notation

𝐴−1
𝑙𝑒𝑓𝑡 = (𝐴T𝐴)−1𝐴T. (10.2)

A few remarks:
(a) If the 𝑛 × 𝑘 matrix 𝐴 has full column rank, with 𝑛 > 𝑘, then the 𝑛 × 𝑛
matrix 𝐴𝐴−1

𝑙𝑒𝑓𝑡 = 𝐴(𝐴T𝐴)−1𝐴T cannot be the identity matrix 𝐼𝑛, since
𝐴𝐴−1

𝑙𝑒𝑓𝑡 will have rank less than 𝑛, whereas the identity matrix 𝐼𝑛 has rank
𝑛. This emphasizes that 𝐴−1

𝑙𝑒𝑓𝑡 is not a two-sided inverse. In fact, 𝐴 will
not have a right-inverse, since the rank of the 𝑛×𝑛 matrix 𝐴𝐵 will be less
than 𝑛 for any 𝑘 × 𝑛 matrix 𝐵.
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(b) If 𝐴 is orthogonal, then (10.2) reduces to 𝐴T since 𝐴T𝐴 = 𝐼𝑘. If 𝐴 is
square and full rank, then (10.2) reduces to the usual two-sided inverse:

(𝐴T𝐴)−1𝐴T = 𝐴−1(𝐴T)−1𝐴T = 𝐴−1.
(c) If 𝐴 is 𝑛 × 𝑘, with 𝑛 < 𝑘 and full row rank, then 𝐴𝐴T will have an
inverse. We can then define a right-inverse

𝐴−1
𝑟𝑖𝑔ℎ𝑡 = 𝐴T(𝐴𝐴T)−1 .

You can easily see that 𝐴𝐴−1
𝑟𝑖𝑔ℎ𝑡 = 𝐼𝑛. The right-inverse is not unique, and

the left-inverse does not exist.

10.1.3 Projections
Suppose 𝐴 is a 3 × 2 matrix with independent columns (so it has full
column rank = 2) and 𝑦 is a 3 × 1 vector. Suppose 𝑦 is not in the column
space of 𝐴, i.e., 𝑦 ∉ 𝐶(𝐴, 2). Then there are no vectors 𝑥 ∈ ℝ2 such that
𝐴𝑥 = 𝑦. This is illustrated in Fig. 10.1 (both panels). Since 𝐴 has rank 2,
the column space 𝐶(𝐴, 2) is a plane. We represent this plane in Fig. 10.1
with a parallelogram. The parallelogram is depicted as though the plane
is horizontal, but this need not be the case. The figure should be viewed
as though the entire ℝ3 space has been rotated so that the plane appears
horizontal. All vectors of the form 𝐴𝑥, 𝑥 ∈ ℝ2, lie on the plane. Since
the vector 𝑦 is not in 𝐶(𝐴, 2), it does not lie on the plane. The null space
𝑁(𝐴T, 1) has dimension 1 and is orthogonal to 𝐶(𝐴, 2). It is represented by
the perpendicular line passing through the origin 𝑂. All vectors in 𝑁(𝐴T, 1)
can be represented by arrows on or parallel to this line.

O
Ax

y e

N(AT, 1)

C(A, 2)

(a)

O
Ax

y e

N(AT, 1)

C(A, 2)

(b)

Fig. 10.1. Non-orthogonal and orthogonal projections.

In Fig. 10.1(a) we draw two non-orthogonal vectors, one 𝐴 ̃𝑥 ∈ 𝐶(𝐴, 2),
and the other ̃𝑒 such that 𝐴 ̃𝑥+ ̃𝑒 = 𝑦. In Fig. 10.1(b) we draw two orthogonal
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vectors, 𝐴 ̂𝑥 ∈ 𝐶(𝐴, 2) and ̂𝑒 ∈ 𝑁(𝐴T, 1) such that 𝐴 ̂𝑥 + ̂𝑒 = 𝑦. We call
𝐴 ̂𝑥 the orthogonal projection of 𝑦 onto the column space of 𝑋. Which
vector ̃𝑒 or ̂𝑒 has the smaller norm?

Your intuition will suggest to you that ̂𝑒 has a smaller norm than ̃𝑒.
In fact ̂𝑒 will have the smallest norm among the vectors taking 𝐴𝑥 to 𝑦.
Furthermore, this is also true in the general case: If 𝐴 is 𝑛× 𝑘, with 𝑛 > 𝑘
and full column rank 𝑟 = 𝑘, then

̂𝑒 = 𝑦 − 𝐴 ̂𝑥 ,

where 𝐴 ̂𝑥 is the orthogonal projection of 𝑦 onto 𝐶(𝐴, 2), will have the
smallest norm among all vectors 𝑒 such that 𝐴𝑥 + 𝑒 = 𝑦. We show this by
showing that ̂𝑥 that minimizes ‖𝑒‖2 = (𝑦 − 𝐴𝑥)T(𝑦 − 𝐴𝑥), i.e.,

̂𝑥 = argmin
𝑥

(𝑦 − 𝐴𝑥)T(𝑦 − 𝐴𝑥)

= argmin
𝑥

(𝑦T𝑦 − 𝑥T𝐴T𝑦 − 𝑦T𝐴𝑥 + 𝑥T𝐴T𝐴𝑥)

= argmin
𝑥

(𝑦T𝑦 − 2𝑥T𝐴T𝑦 + 𝑥T𝐴T𝐴𝑥) .

The first order condition of this minimization problem is

𝑑
𝑑𝑥‖𝑒‖

2 = −2𝐴T𝑦 + 2𝐴T𝐴 ̂𝑥 = 0𝑘 . (10.3)

This condition can be rewritten as

𝐴T(𝑦 − 𝐴 ̂𝑥) = 𝐴T ̂𝑒 = 0𝑘 . (10.4)

The second derivative of ‖𝑒‖2 is

𝑑2

𝑑𝑥 𝑑𝑥T ‖𝑒‖2 = 2𝐴T𝐴 . (10.5)

Since 𝐴 is full column rank, we have 𝐴𝑐 ≠ 0𝑛 for any 𝑐 ≠ 0𝑘, and therefore

𝑐T(2𝐴T𝐴)𝑐 = 2(𝐴𝑐)T(𝐴𝑐) > 0 for all 𝑐 ≠ 0𝑘 .

That is, the second derivative (10.5) is positive definite, and the solution to
the FOC (10.3) solves the minimization problem. This condition, of course,
just says that ̂𝑒 is orthogonal to the column space of 𝐴.

Solving (10.4) gives

𝐴T𝐴 ̂𝑥 = 𝐴T𝑦
̂𝑥 = (𝐴T𝐴)−1𝐴T𝑦 .

(10.6)

The orthogonal projection of 𝑦 onto the column space of 𝐴 is therefore

𝐴 ̂𝑥 = 𝐴(𝐴T𝐴)−1𝐴T𝑦 . (10.7)
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Incidentally, the second line is (10.6) is called the normal equation
of the projection problem. The 𝑛 × 𝑛 vector 𝐴(𝐴T𝐴)−1𝐴T is called a
projection matrix. The vector ̂𝑒 is

̂𝑒 = 𝑦 − 𝐴(𝐴T𝐴)−1𝐴T𝑦
= (𝐼𝑛 −𝐴(𝐴T𝐴)−1𝐴T)𝑦 .

Finally, notice that the expression (𝐴T𝐴)−1𝐴T is just 𝐴+
𝑙𝑒𝑓𝑡. Another

way to think of the computations above is that 𝑦 can be written the sum
of 𝐴 ̂𝑥 ∈ 𝐶(𝐴, 𝑘) and ̂𝑒 ∈ 𝑁(𝐴T, 𝑛 − 𝑘):

𝐴 ̂𝑥 + ̂𝑒 = 𝑦 . (10.8)

Pre-multiplying both sides by 𝐴+
𝑙𝑒𝑓𝑡 = (𝐴T𝐴)−1𝐴T gives

𝐴−1
𝑙𝑒𝑓𝑡𝐴 ̂𝑥 + 𝐴−1

𝑙𝑒𝑓𝑡 ̂𝑒 = 𝐴−1
𝑙𝑒𝑓𝑡𝑦

̂𝑥 + (𝐴T𝐴)−1𝐴T ̂𝑒 = (𝐴T𝐴)−1𝐴T𝑦
̂𝑥 = (𝐴T𝐴)−1𝐴T𝑦 since 𝐴T ̂𝑒 = 0𝑘 .

The following example illustrates a very important application of the
projection idea.

Example 10.3 Suppose you have a data set containing 8 observations of
two variables 𝑥 and 𝑦 as shown in Table 10.1, and shown as points labelled
(𝑥𝑖, 𝑦𝑖) in Fig. 10.2. The variables are believed to be related according to

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀 , where 𝐸(𝜀 ∣ 𝑥) = 0 (10.9)

so that 𝐸(𝑦 ∣ 𝑥) = 𝛽0 + 𝛽1𝑥. The objective is to estimate this conditional
expectation using the given data set. We do this by finding the best fitting
line through these data points.

Table 10.1. A small data set

Obs. no. 𝑖 𝑥𝑖 𝑦𝑖
1 7.29 31.52
2 5.61 35.89
3 1.25 12.15
4 3.98 20.06
5 7.81 42.32
6 5.11 18.57
7 1.83 26.44
8 8.54 45.25
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First we need to define what “best fitting” means. If the data all fall on
a straight line, then we can find ̂𝛽0 and ̂𝛽1 such that 𝑦𝑖 = ̂𝛽0 + ̂𝛽1𝑥𝑖, but
since the data do not (and in general it will not), we write

𝑦𝑖 = ̂𝛽0 + ̂𝛽1𝑥𝑖 + ̂𝜀𝑖 , 𝑖 = 1, 2, ..., 8 . (10.10)

We call ̂𝜀𝑖, 𝑖 = 1, 2,… , 8 the “residuals”. We can also write (10.10) as

⎡
⎢⎢
⎣

𝑦1
𝑦2
⋮
𝑦8

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

1 𝑥1
1 𝑥2
⋮ ⋮
1 𝑥8

⎤
⎥⎥
⎦
[

̂𝛽0
̂𝛽1
] +

⎡
⎢⎢
⎣

̂𝜀1
̂𝜀2
⋮
̂𝜀8

⎤
⎥⎥
⎦

(10.11)

or simply
𝑦 = 𝑋 ̂𝛽 + ̂𝜀 (10.12)

where we have overloaded the symbol “𝑦” to refer to both the variable
𝑦 as well as the vector of observations of 𝑦. Comparing with our earlier
discussion of projections, 𝑦, 𝑋, ̂𝛽 and ̂𝜀 correspond with 𝑏, 𝐴, ̂𝑥 and ̂𝑒
respectively. Given the particular 𝑥𝑖 observations that we have, the matrix
𝑋 is full column rank. The 8 × 1 vector 𝑋 ̂𝛽 represents vectors in the 2-
dimensional column space of 𝑋. Because the data do not all fall exactly in
a straight line, the vector 𝑦 does not lie in the column space of 𝑋.

1 2 3 4 5 6 7 8
x
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35

40
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(x1, y1)

1

(x2, y2)
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(x4, y4)
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(x5, y5)
5

(x6, y6)
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(x7, y7)
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(x8, y8)
8

Data points
Regression line

Fig. 10.2. Fitting a straight line using OLS.

Suppose we define a best fitting line as ̂𝛽0 + ̂𝛽1𝑥𝑖 such that the sum of
the square of the vertical distances from the data points to the line (i.e.,
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the “sum of squared residuals”) is as small as possible. This means seeking
̂𝛽0 and ̂𝛽1 such that

8
∑
𝑖=1

̂𝜀2𝑖 = ̂𝜀T ̂𝜀 = ‖ ̂𝜀‖2.

Our discussion of projections tells us that we can do this by choosing ̂𝛽 so
that 𝑋 ̂𝛽 is the orthogonal projection of 𝑦 onto the column space of 𝑋, i.e.,

̂𝛽 = (𝑋T𝑋)−1𝑋T𝑦 . (10.13)

For our data set, we can calculate ̂𝛽 to be

̂𝛽 = [
̂𝛽0
̂𝛽1
] = [ 3.614

10.312] .

Our fitted line is ̂𝑦 = 3.614+ 10.312𝑥, which is an estimate of 𝐸(𝑦 ∣ 𝑥).The
fitted values ̂𝑦𝑖 are those values such that (𝑥𝑖, ̂𝑦𝑖) lie on the fitted line, i.e.,

̂𝑦𝑖 = 3.614 + 10.312𝑥𝑖 , 𝑖 = 1, 2, ..., 8 . (10.14)

In terms of matrices, the fitted values can be calculated as

̂𝑦 = 𝑋 ̂𝛽 = 𝑋(𝑋T𝑋)−1𝑋T𝑦 . (10.15)

In statistical terms, the fitted values are the “predicted” values of 𝑦𝑖 at
𝑥 = 𝑥𝑖, ̂𝐸(𝑦 ∣ 𝑥 = 𝑥𝑖). In the “geometry” of linear algebra, the vector ̂𝑦 is
the orthogonal projection of 𝑦 onto the column space of 𝑋.

The model (10.9) is called simple linear regression models, and the
method we have described for estimating it is ordinary least squares. It
extends readily to multiple linear regression models

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝐾𝑥𝐾 + 𝜀 , where 𝐸(𝜀 ∣ 𝑥1, 𝑥2,… , 𝑥𝐾) = 0
where 𝑥𝑘 now refers to a variable, not the 𝑘th observation of 𝑥. Given a
data set {𝑦𝑖, 𝑥1,𝑖, 𝑥2,𝑖,… , 𝑥𝐾,𝑖}𝑛𝑖=1 we would write

⎡
⎢⎢
⎣

𝑦1
𝑦2
⋮
𝑦𝑛

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

1 𝑥1,1 𝑥2,1 … 𝑥𝐾,1
1 𝑥1,2 𝑥2,2 … 𝑥𝐾,2
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥1,𝑛 𝑥2,𝑛 … 𝑥𝐾,𝑛

⎤
⎥⎥
⎦

⎡
⎢⎢⎢⎢
⎣

̂𝛽0
̂𝛽1
̂𝛽2
⋮
̂𝛽𝐾

⎤
⎥⎥⎥⎥
⎦

+
⎡
⎢⎢
⎣

̂𝜀1
̂𝜀2
⋮
̂𝜀𝑛

⎤
⎥⎥
⎦

(10.16)

or simply 𝑦 = 𝑋 ̂𝛽 + ̂𝜀. As long as 𝑋 has full column rank, the ̂𝛽 that
minimizes the sum of squared residuals is still given by (10.13). The fitted
regression “line” is

̂𝑦 = ̂𝛽0 + ̂𝛽1𝑥1 + ̂𝛽2𝑥2 +⋯+ ̂𝛽𝐾𝑥𝐾.
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Linear regression is a fundamental technique in statistics, econometrics,
and data science. Even methods for working with highly non-linear models
often use the linear regression methodology in some way. In our discussion
here, we have merely been concerned with the geometric aspects of the “line
fitting” problem. In applications, we will be concerned with the statistical
properties and interpretation of the estimators, and how to use the model
for prediction, causal inference, and testing theories.

10.1.4 Exercises
Ex. 10.1 Show that

𝐴 = [cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ]

is an orthogonal matrix, and that the transformation 𝐴𝑥 rotates the vector 𝑥 by
an angle of 𝜃 without changing its norm.

Ex. 10.2 The orthogonal projection of

𝑦 =
⎡
⎢⎢
⎣

𝑦1
𝑦2
⋮
𝑦𝑛

⎤
⎥⎥
⎦

onto the column space of 𝑋 =
⎡
⎢⎢
⎣

1 𝑥1
1 𝑥2
⋮ ⋮
1 𝑥𝑛

⎤
⎥⎥
⎦

is ̂𝑦 = 𝑋 ̂𝛽 where ̂𝛽 = [ ̂𝛽0 ̂𝛽1]
T
= (𝑋T𝑋)−1𝑋T𝑦. Show that

̂𝛽0 = 𝑦 − ̂𝛽1𝑥 and ̂𝛽1 = ∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥)2 .

Ex. 10.3 Suppose ̂𝑦 is an orthogonal projection of 𝑦 onto the column space of
𝑋. Find the projection of ̂𝑦 onto the column space of 𝑋?

Ex. 10.4 (Projection onto a vector) (a) Show that the formula for the orthogonal
projection of a (non-zero) vector 𝑦 onto another (non-zero) vector 𝑥 is

̂𝑦 = 𝑥T𝑦
𝑥T𝑥𝑥

Find ̂𝑒 orthogonal to 𝑦 such that 𝑦 = ̂𝑦 + ̂𝑒.
(b) Describe the orthogonal projection of 𝑦 onto 𝑥 if 𝑥 = 𝑖𝑛, the 𝑛-vector of ones.

Ex. 10.5 Suppose the columns of the 𝑛 × 𝑘 matrix 𝑋 are orthogonal. Find the
formula for ̂𝑦, the orthogonal projection of an 𝑛-vector 𝑦 onto the column space
of 𝑋. How does the formula simplify if 𝑋 is an orthogonal matrix?

10.2 The LU and QR Decompositions
We begin our discussion of matrix factorizations with the LU and QR de-
compositions. To develop a good understanding of these factorizations (and
the other ones we will discuss shortly), we have to talk about how they are
constructed. However, our focus in on understanding how, why and when
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they work, rather than on actually computing them. Packages exists in
Python for computing these factorizations.

We begin with a few additional facts regarding inverses. You should
take a few moments to see if you can verify these statements. First, the
inverse of a diagonal matrix

𝐴 = diag(𝑎11, 𝑎22,… , 𝑎𝑘𝑘)
is the diagonal matrix

𝐴−1 = diag(𝑎−1
11 , 𝑎−1

22 ,… , 𝑎−1
𝑘𝑘 ) .

This inverse exists only if none of the diagonal elements are zero. If 𝐴 is
upper (lower) triangular with no zeros along the diagonal, then 𝐴−1 is also
upper (lower) triangular with no zeros along the diagonal. If 𝐴 is upper
(lower) triangular with ones along the diagonal, then 𝐴−1 is also upper
(lower) triangular with ones along the diagonal. Finally, if 𝐴 is symmetric,
then 𝐴−1 is symmetric.

10.2.1 The LU Decomposition
Let 𝐴 be a full rank square matrix. Recall from Chapter 4 and Chapter 8
that we can apply row operations to 𝐴 to reduce it to an upper triangular
matrix (see for instance Example 4.3). These operations can be achieved
by pre-multiplying 𝐴 with elementary row operation matrices that adds a
multiple of an upper row to a lower row. These are matrices that have ones
along the diagonal, one non-zero element below the diagonal, and all other
elements zero. For instance, to add 𝛼 times the first row of a 3 × 3 matrix
to the third row, we can multiply that matrix with

𝐸[3]←[3]+𝛼[1] = ⎡⎢
⎣

1 0 0
0 1 0
𝛼 0 1

⎤⎥
⎦
.

Such “elimination” matrices are lower triangular, with ones down the diag-
onal, and so its inverse will have the same structure.

Occasionally, we will have to permutate the order of the rows of the
matrix, as in Example 8.15. Such permutations can be done at the start,
before starting the elimination process, by pre-multiplying 𝐴 by a permu-
tation matrix 𝑃 .

In other words, starting with the appropriately permutated matrix 𝑃𝐴,
we apply a series of elimination matrices 𝐸1, 𝐸2,… ,𝐸𝑝 until 𝑃𝐴 becomes
an upper triangular matrix 𝑈 , i.e.,

𝐸𝑝𝐸𝑝−1 …𝐸2𝐸1𝑃𝐴 = 𝑈 .
This gives the decomposition

𝑃𝐴 = 𝐸−1
𝑝 𝐸−1

𝑝−1 …𝐸−1
2 𝐸−1

1 𝑈 = 𝐿𝑈 .
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In this decomposition, the diagonals elements of 𝑈 will in general not be
ones. We can alternatively write 𝑈 as 𝐷𝑈 where the diagonal elements of 𝑈
are replaced with ones, and 𝐷 is a diagonal matrix containing the diagonal
elements of the previous 𝑈 . We have

𝑃𝐴 = 𝐿𝐷𝑈 .

This is the LU decomposition of a full rank square matrix. If permuta-
tions are not required, we have 𝐴 = 𝐿𝑈 or 𝐴 = 𝐿𝐷𝑈 . In the latter form,
the diagonals elements of 𝐿 and 𝑈 are all ones.
Example 10.4 We have

𝐴 = ⎡⎢
⎣

1 2 0
3 5 1
7 4 2

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
3 1 0
7 10 1

⎤⎥
⎦
⎡⎢
⎣

1 2 0
0 −1 1
0 0 −8

⎤⎥
⎦

𝐿𝑈

= ⎡⎢
⎣

1 0 0
3 1 0
7 10 1

⎤⎥
⎦
⎡⎢
⎣

1 0 0
0 −1 0
0 0 −8

⎤⎥
⎦
⎡⎢
⎣

1 2 0
0 1 −1
0 0 1

⎤⎥
⎦

𝐿𝐷𝑈

The LU decomposition is merely an expression of Gaussian elimination
in matrix form. It can be used to solve full-rank systems of 𝑛 equations in
𝑛 unknowns by breaking them into triangular systems. Triangular systems
of equations are easy to solve. If

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1
𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2

𝑎33𝑥3 = 𝑏3
then 𝑥3 = 𝑏3/𝑎33. Substituting 𝑥3 into the second equation gives 𝑥2, and
then substituting 𝑥3 and 𝑥2 into the first equation gives 𝑥1. “Lower triangu-
lar systems” are just as easy to solve. Then given a 𝑛-equation 𝑛-unknown
system 𝐴𝑥 = 𝑏, write 𝐴𝑥 = 𝑏 as 𝐿𝑈𝑥 = 𝑏, or 𝐿𝑐 = 𝑏, where 𝑈𝑥 = 𝑐. First
solve 𝐿𝑐 = 𝑏 for 𝑐, then solve 𝑈𝑥 = 𝑐 for 𝑥.
10.2.1.1 The Cholesky Decomposition When the LDU decomposition is
applied to symmetric positive definite matrices, we get the Cholesky De-
composition. A square matrix 𝐴 is positive definite if

𝑥T𝐴𝑥 > 0 for all 𝑥 ≠ 0.

For such matrices, the LDU decomposition becomes

𝐴 = 𝐿𝐷𝐿T

where 𝐿 is lower triangular with ones along the diagonal and
𝐷 = diag(𝑑11, 𝑑22,… , 𝑑𝑛𝑛) with 𝑑𝑘𝑘 > 0 for all 𝑘 = 1, 2,… , 𝑛. We can
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write further write 𝐷 = 𝐷1/2𝐷1/2 where 𝐷1/2 = diag(𝑑1/2
11 , 𝑑1/2

22 ,… , 𝑑1/2
𝑛𝑛 ).

Absorbing the 𝐷1/2 matrix into the 𝐿 matrix gives the decomposition

𝐴 = 𝐿𝐷1/2𝐷1/2𝐿T = 𝐿𝐷1/2(𝐷1/2)T𝐿T = 𝐿∗𝐿∗T

where 𝐿∗ = 𝐿𝐷1/2.

Example 10.5 The Cholesky decomposition of

𝐴 = ⎡⎢
⎣

4 −2 4
−2 5 8
4 8 14

⎤⎥
⎦

is

⎡⎢
⎣

4 −2 4
−2 5 8
4 8 14

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝐴

= ⎡⎢
⎣

1 0 0
−0.5 1 0
−1 1.5 1

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝐿

⎡⎢
⎣

4 0 0
0 4 0
0 0 1

⎤⎥
⎦⏟⏟⏟⏟⏟

𝐷

⎡⎢
⎣

1 −0.5 −1
0 1 1.5
0 0 1

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝐿T

= ⎡⎢
⎣

2 0 0
−0.5 2 0
−1 1.5 1

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝐿∗

⎡⎢
⎣

2 −0.5 −1
0 2 1.5
0 0 1

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝐿∗T

10.2.2 The QR Decompositions
Suppose the 𝑛×𝑘 matrix 𝐴 has full column rank, with column space 𝐶(𝐴, 𝑟).
We can convert 𝐴 into an orthonormal matrix 𝑄 that spans the same space
𝐶(𝐴, 𝑟). There are two ways to do this. The first uses the Gram-Schmidt
(GS) procedure: let

𝐴 = [𝑎1 𝑎2 … 𝑎𝑘]
where 𝑎𝑖, 𝑖 = 1, 2, ..., 𝑘 are the 𝑘 columns of 𝐴. The GS procedure goes
through each column from left to right. At each step, it replaces the column
by a vector that is orthogonal to all the previous columns, and normalizes
the new vector to one.

First define

̃𝐴1 = [ ̃𝑎1 𝑎2 … 𝑎𝑘] where ̃𝑎1 = 𝑎1 ( i.e., do nothing )

𝐴1 = [𝑞1 𝑎2 … 𝑎𝑘] where 𝑞1 = 𝑎1/‖𝑎1‖

This is the same as post-multiplying 𝐴 by 𝐷1 = diag(‖𝑎1‖−1, 1,… , 1). Next,
project 𝑎2 onto 𝑞1 to get the linear projection (𝑞T

1 𝑎2)𝑞1 (remember 𝑞T𝑞 = 1)
and define

̃𝑎2 = 𝑎2 − (𝑞T
1 𝑎2)𝑞1 .
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Set
̃𝐴2 = [𝑞1 ̃𝑎2 … 𝑎𝑘]

𝐴2 = [𝑞1 𝑞2 … 𝑎𝑘] where 𝑞2 = ̃𝑎2/‖ ̃𝑎2‖ .

Notice that to get ̃𝐴2 we subtract 𝑞T
1 𝑎2 times the first column of 𝐴1 from

the second column of 𝐴1. The is an “elementary column operation” and
is equivalent to post-multiplying 𝐴1 by an appropriate upper-triangular
matrix “𝐸2”. Then to normalize the second column, we again post-multiply
with an appropriate diagonal matrix 𝐷2, i.e., 𝐴2 = 𝐴𝐷1𝐸2𝐷2.

Next, project 𝑎3 onto the column space spanned by the first two columns
of 𝐴2. Since the first two columns of 𝐴2 make up an orthogonal matrix,
the linear project is (𝑞1 ⋅ 𝑎3)𝑞1 + (𝑞2 ⋅ 𝑎3)𝑞2 (see Ex. 10.5). Define

̃𝑎3 = 𝑎3 − (𝑞1 ⋅ 𝑎3)𝑞1 − (𝑞2 ⋅ 𝑎3)𝑞2
and normalize it to unit length. Set

̃𝐴3 = [𝑞1 ̃𝑎2 ̃𝑎3 … 𝑎𝑘]

𝐴3 = [𝑞1 𝑞2 𝑞3 … 𝑎𝑘] where 𝑞3 = ̃𝑎3/‖ ̃𝑎3‖ .

This is equivalent to post-multiplying 𝐴2 by an appropriate upper tri-
angular matrix 𝐸3 followed by an appropriate diagonal matrix 𝐷3, i.e.,
𝐴3 = 𝐴𝐷1𝐸2𝐷2𝐸3𝐷3.

Repeat this process until you have orthogonalized every row of 𝐴:

𝐴𝐷1𝐸2𝐷2𝐸3𝐷3 …𝐸𝑝𝐷𝑝 = 𝑄 = [𝑞1 𝑞2 … 𝑞𝑘] .

The matrix 𝐴 and 𝑄 are 𝑛× 𝑘 whereas the 𝐷 and 𝐸 matrices are full rank
diagonal or upper triangular matrices. We have

𝐴 = 𝑄𝐷−1
𝑝 𝐸−1

𝑝 …𝐷−1
2 𝐸−1

2 𝐷−1
1 = 𝑄𝑅

where 𝑅 is a 𝑘 × 𝑘 upper triangular matrix.
In summary, the GS procedure converts the columns of 𝐴 into orthonor-

mal columns in 𝑄. The 𝑅 matrix is a summary of all of the steps needed to
do this. The columns of 𝑄 forms an orthonormal basis for 𝐶(𝐴, 𝑘). Since
𝑄 is orthogonal, 𝑄−1 = 𝑄T.

The QR decomposition provides an efficient way to do least squares
computations. Recall the formula for orthogonally projecting an 𝑛-vector
𝑦 onto the column space of an 𝑛 × 𝑘 matrix 𝑋 with full column rank. The
orthogonal projection is ̂𝑦 = 𝑋 ̂𝛽, where ̂𝛽 = (𝑋T𝑋)−1𝑋T𝑦. For large
matrices, the inverse of 𝑋T𝑋 can be computationally expensive. However,
if we have the QR decomposition

𝑋 = 𝑄𝑅 where 𝑄T𝑄 = 𝐼 and 𝑅 is upper triangular,
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then from the normal equations 𝑋T𝑋 ̂𝛽 = 𝑋T𝑦, we have

𝑋T𝑋 ̂𝛽 = 𝑋T𝑦
𝑅T𝑄T𝑄𝑅 ̂𝛽 = 𝑅T𝑄T𝑦

𝑅T𝑅 ̂𝛽 = 𝑅T𝑄T𝑦
𝑅 ̂𝛽 = 𝑄T𝑦

where the last line holds because 𝑅 is a full rank square matrix. We have
turned the problem of solving the normal equations for ̂𝛽 into solving a
triangular system of equations.

Example 10.6 The following is a small example of the QR decomposition
obtained via the GS procedure:

𝐴 =
⎡
⎢⎢
⎣

1 1 1
1 2 2
1 0 3
1 1 1

⎤
⎥⎥
⎦

=
⎡
⎢
⎢
⎣

1
2 0 − 1

21
2

1√
2

1
2

1
2 − 1√

2
1
2

1
2 0 − 1

2

⎤
⎥
⎥
⎦

⎡⎢⎢
⎣

2 2 7
2

0
√
2 − 1√

2
0 0 3

2

⎤⎥⎥
⎦

= 𝑄𝑅 .

10.2.2.1 Householder Reflectors An approach to generating QR decom-
positions that is numerically more stable than the GS procedure uses what
are known as Householder matrices or Householder reflectors.2 For
any 𝑛-vector 𝑣, define the corresponding Householder reflector to be the
matrix

𝐻 = 𝐼𝑛 − 2
‖𝑣‖2 𝑣𝑣

T .

It can be shown that this matrix, when pre-multiplied into an 𝑛-vector 𝑥,
reflects 𝑥 about a plane whose normal vector is 𝑣/‖𝑣‖.
Example 10.7 Consider ℝ2 and the line 𝑥2 = −𝑥1. A normal vector to
this line is

𝑣
‖𝑣‖ = [

1√
2
1√
2
] .

The Householder matrix is

𝐻 = [1 0
0 1] − 2[

1√
2
1√
2
][ 1√

2
1√
2] = [ 0 −1

−1 0 ]

which transforms any vector [𝑥1
𝑥2

] into the vector [−𝑥2
−𝑥1

], which is a reflec-
tion across the line 𝑥2 = −𝑥1.

2Alston Scott Householder (1904-1993).
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Householder reflectors are symmetric and orthogonal (see exercises), so
we have 𝐻 𝐻 = 𝐼𝑛. They can be used to eliminate entries below pivots,
providing an alternative to Gaussian elimination. In particular, if 𝑣 is
defined as

𝑣 = 𝑥 ± ‖𝑥‖𝑒1 where 𝑥 =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮
𝑥𝑛

⎤
⎥⎥
⎦

and 𝑒1 =
⎡
⎢⎢
⎣

1
0
⋮
0

⎤
⎥⎥
⎦
,

then 𝐻 𝑥 = [𝛼1 0 … 0]T.
We show this for 𝑣 = 𝑥 + ‖𝑥‖𝑒1. As an exercise, you should repeat the

argument for 𝑣 = 𝑥−‖𝑥‖𝑒1. In practice, we choose “+” or “−” to make ‖𝑣‖
as large as possible, to avoid dividing by small numbers when forming 𝐻.

We first note that

2𝑣T𝑥 = 2(𝑥T𝑥 + ‖𝑥‖𝑒T𝑥) = 2𝑥T𝑥 + 2‖𝑥‖𝑥1 and

𝑣T𝑣 = (𝑥T + ‖𝑥‖𝑒T
1 )(𝑥 + ‖𝑥‖𝑒1)

= 𝑥T𝑥 + 2‖𝑥‖𝑥1 + ‖𝑥‖2
= 2𝑥T𝑥 + 2‖𝑥‖𝑥1 ,

therefore

𝐻 𝑥 = (𝐼𝑛 − 2
‖𝑣‖2 𝑣𝑣

T)𝑥 = 𝑥 − 2
‖𝑣‖2 𝑣𝑣

T𝑥

= 𝑥 − 2𝑣T𝑥
𝑣T𝑣 𝑣 = 𝑥 − 𝑣 = −‖𝑥‖𝑒1 =

⎡
⎢⎢
⎣

−‖𝑥‖
0
⋮
0

⎤
⎥⎥
⎦

.

The idea is this: given a full column 𝑛 × 𝑘 matrix 𝐴 = [𝑎1 𝑎2 …𝑎𝑘],
pre-multiply 𝐴 by 𝐻1 with 𝑣 = 𝑎1 ±‖𝑎1‖𝑒1. This places a non-zero term in
the (1, 1)th position of 𝐴 and makes everything below it 0. Next define

𝐻2 = [𝐼1 0
0 𝐻2

]

where 𝐻2 is the (𝑛 − 1) × (𝑛 − 1) Householder reflector that turns the
(𝑛 − 1) × 1 vector [𝑦2 𝑦3 … 𝑦𝑛]T into a (𝑛 − 1) × 1 vector of the form
[𝛼2 0 … 0]T. The structure of 𝐻2 means that the first column of the
previously transformed 𝐴 matrix is not affected. Pre-multiplying 𝐻2 into
𝐻1𝐴, we get a matrix with non-zero terms in the (1, 1)th and (2, 2)th
position, and all terms below them equal to zero. Repeat in similar fashion
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until we get a matrix of the form

𝐻𝑝 …𝐻2𝐻1𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼1 ∗ ∗ … ∗
0 𝛼2 ∗ … ∗
0 0 𝛼3 … ∗
0 0 0 … 𝛼𝑘
0 0 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Define the matrix on the right to be the 𝑅 matrix. All of the Householder
and modified Householder matrices on the left are symmetric and orthogo-
nal. Therefore

𝐴 = 𝐻1𝐻2 …𝐻𝑝𝑅 = 𝑄𝑅 .
Since the product of orthogonal matrices are orthogonal3, 𝑄 is orthogonal.

The QR decomposition produced here is slightly different from the one
produced by the GS procedure. For one thing, the GS procedure produced
𝐴 = 𝑄𝑅 where 𝑄 and 𝑅 are 𝑛×𝑘 and 𝑘×𝑘 respectively, with the 𝑄 matrix
containing an orthogonal basis for 𝐶(𝐴, 𝑘). In the Householder approach,
𝑄 and 𝑅 are 𝑛×𝑛 and 𝑛× 𝑘 respectively. The Householder 𝑄 contains an
orthogonal basis for the entire ℝ𝑛 space, with the first 𝑘 columns serving
as an orthogonal basis for 𝐶(𝐴, 𝑘). Since the bottom 𝑛 − 𝑘 rows of the
Householder 𝑅 are zeros, we can discard the right-most 𝑛 − 𝑘 columns of
𝑄 and bottom 𝑛 − 𝑘 rows of 𝑅 to get a QR decomposition akin to the one
produced by GS.
Example 10.8 For the matrix 𝐴 in Example 10.6, we have the following
QR decomposition obtained via Householder reflectors:

𝐴 =
⎡
⎢⎢
⎣

1 1 1
1 2 2
1 0 3
1 1 1

⎤
⎥⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

− 1
2 0 1

2 − 1√
2

− 1
2 − 1√

2 − 1
2 0

− 1
2

1√
2 − 1

2 0
− 1

2 0 1
2

1√
2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

−2 −2 − 7
2

0 −
√
2 1√

2
0 0 − 3

2
0 0 0

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

− 1
2 0 1

2
− 1

2 − 1√
2 − 1

2
− 1

2
1√
2 − 1

2
− 1

2 0 1
2

⎤
⎥
⎥
⎥
⎦

⎡⎢⎢
⎣

−2 −2 − 7
2

0 −
√
2 1√

2
0 0 − 3

2

⎤⎥⎥
⎦

.

In the last line, we dropped the fourth column and last row of the previous
line’s “expanded” 𝑄 and 𝑅 matrices, respectively.

Most computer packages now use the Householder approach to generate
QR decompositions.

3If 𝐴T𝐴 = 𝐼 and 𝐵T𝐵 = 𝐼, then (𝐴𝐵)T𝐴𝐵 = 𝐵T𝐴T𝐴𝐵 = 𝐼.
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10.2.3 Exercises
Ex. 10.6 (a) Show that Householder reflectors are symmetric and orthogonal.
(b) Show that matrices of the form

𝐻 = [ 𝐼𝑝 0𝑝×(𝑛−𝑝)
0(𝑛−𝑝)×𝑝 𝐻𝑛−𝑝

]

are orthogonal and symmetric, where 𝐻𝑛−𝑝 is a 𝑛−𝑝×𝑛−𝑝 Householder reflector.

Ex. 10.7 (a) Show that the columns of the matrix 𝐴 in Example 10.6 and
Example 10.8 are not orthogonal.
(b) Show that the 𝑄 matrices in both of those examples are orthogonal matrices.

10.3 The Eigendecomposition and the SVD
The eigendecomposition of a square matrix 𝐴 refers to the factorization
𝐴 = 𝑆Λ𝑆−1 where the columns of 𝑆 are eigenvectors of 𝐴 and Λ is a diagonal
matrix whose diagonal elements are the 𝑛 eigenvalues of 𝐴, both terms to be
defined shortly.4 Many square matrices can be factorized in this manner.
If so, we say that 𝐴 is diagonalizable, since it follows that 𝑆−1𝐴𝑆 = Λ.
All symmetric matrices are diagonalizable, and their eigendecompositions
have additional useful structure. When applied to symmetric matrices, the
eigendecomposition is called the spectral decomposition of 𝐴.

The eigenvalues of a square matrix 𝐴 contain information regarding
many of its key properties. For instance, the product of the eigenvalues
of 𝐴 gives its determinant and the sum of the eigenvalues gives its trace.
The rank of 𝐴 is equal to the number of non-zero eigenvalues in 𝐴T𝐴. A
symmetric matrix 𝐴 is positive semi-definite (𝑐T𝐴𝑐 ≥ 0 for all 𝑐 ≠ 0𝑛) if
and only if all of its eigenvalues are non-negative. It is positive definite
(𝑐T𝐴𝑐 > 0 for all 𝑐 ≠ 0) if and only if all of its eigenvalues are positive.

The eigendecomposition of 𝐴 is useful in dynamic models. If

𝑥𝑡+1 = 𝐴𝑥𝑡 , 𝑡 = 0, 1, 2,…
then from an initial 𝑥0 ∈ ℝ𝑛, we have

𝑥1 = 𝐴𝑥0 , 𝑥2 = 𝐴𝑥1 = 𝐴2𝑥0 , 𝑥𝑡 = 𝐴𝑡𝑥0 ,
and so on. If 𝐴 = 𝑆Λ𝑆−1, then

𝐴𝑡 = 𝑆Λ𝑆−1 𝑆Λ𝑆−1𝑆Λ𝑆−1 …𝑆Λ𝑆−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑡 terms

= 𝑆Λ𝑡𝑆−1.

The 𝑡th power of a diagonal matrix is easy to compute — just raise each
of the diagonal elements to the 𝑡th power. This also means that if the
eigenvalues of 𝐴 all have modulus less than one, then 𝑥𝑡 will eventually
converge to the zero vector, since Λ𝑡 → 0𝑛×𝑛 as 𝑡 → ∞.

4The term “eigen” is the German word for “own”. It is often used in mathematics to
construct names of characteristic features of various mathematical objects.
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10.3.1 Eigenvalues and Eigenvectors
Let 𝐴 be an 𝑛×𝑛 matrix of real numbers and consider the transformation

𝑦 = 𝐴𝑥 , 𝑥 ∈ ℂ𝑛 . (10.17)

It will be convenient for certain statements we would like to make to con-
sider the domain of (10.17) to be the set of all 𝑛-vectors of complex numbers,
which includes the set of 𝑛-vectors of real numbers. The matrix 𝐴, however,
will be restricted to square matrices containing only real numbers.

Given 𝐴, there will be certain vectors 𝑥 ∈ ℂ𝑛 for which the transformed
vector 𝑦 = 𝐴𝑥 is simply a scalar multiple of 𝑥, i.e.,

𝐴𝑥 = 𝜆𝑥 . (10.18)

where 𝜆 is possibly complex-valued scalar. This will typically not be the
case for most vectors 𝑥 ∈ ℂ𝑛, but there will be some vectors for which
(10.18) holds. Such vectors are called eigenvectors corresponding to the
eigenvalue 𝜆.

If 𝜆 is real, then for real vectors 𝑥 satisfying (10.18) the transformation
𝑦 = 𝐴𝑥 merely stretches or shrinks the vector (if |𝜆| ≠ 1), flipping its direc-
tion if 𝜆 < 0. If 𝜆 = 0, then vectors for which (10.18) holds are “eliminated”.
We are unaware of any useful “geometric intuition” for the case where 𝜆 or
𝑥 are complex-valued, but this does not make such eigenvalues and eigen-
vectors any less useful or valid. Of course, (10.18) always holds for 𝑥 = 0𝑛.
We are interested in situations where (10.18) holds for non-trivial 𝑥.

Example 10.9 The matrix

𝐴 = [1 3
2 0]

has an eigenvalue 𝜆 = 3. Any vector of the form

𝑥 = [
3
2𝑠
𝑠 ] , 𝑠 ∈ ℂ

is an eigenvector corresponding to 𝜆 = 3. We can verify this by direct
multiplication:

𝐴𝑥 = [1 3
2 0] [

3
2𝑠
𝑠 ] = [

3
2𝑠 + 3𝑠
2 ( 3

2𝑠)
] = 3 [

3
2𝑠
𝑠 ] = 𝜆𝑥 . (10.19)

Notice that there is a whole subspace of vectors associated with the eigen-
value 𝜆 = 3. Furthermore, this set of eigenvectors includes both real and
complex vectors.
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How do we find eigenvalues and eigenvectors for a general 𝑛×𝑛 matrix
𝐴? Rewrite (10.18) as

𝜆𝑥 − 𝐴𝑥 = (𝜆𝐼𝑛 −𝐴)𝑥 = 0 . (10.20)

This tell us that (a) for any eigenvalue 𝜆, the eigenvectors associated with 𝜆
make up the nullspace of the matrix 𝜆𝐼𝑛−𝐴 (we call this the eigenspace of
𝐴), and (b) this nullspace of eigenvectors will be non-trivial only if 𝜆𝐼𝑛−𝐴
has determinant zero. That is, the eigenvalues must satisfy

det(𝜆𝐼𝑛 −𝐴) = 0 (10.21)

or equivalently, det(𝐴 − 𝜆𝐼𝑛) = 0. The left-hand-side of (10.21) is
an order-𝑛 polynomial in 𝜆 called the characteristic polynomial of
the matrix 𝐴. Equation (10.21) can be factorized as described in the
Fundamental Theorem of Algebra, i.e.,

det(𝜆𝐼𝑛 −𝐴) = 𝜆𝑛 + 𝜁𝑛−1𝜆𝑛−1 +⋯+ 𝜁1𝜆 + 𝜁0
= (𝜆 − 𝜆1)(𝜆 − 𝜆2) × ⋯ × (𝜆 − 𝜆𝑛) = 0 . (10.22)

The eigenvalues of 𝐴 are the 𝑛 roots 𝜆𝑗, 𝑗 = 1, 2,… , 𝑛, of this equation.
The eigenvalues may be real or complex-valued, and there may be repeated
values. Complex-valued eigenvalues will appear in conjugate pairs, i.e., if
𝑎+𝑏 𝑖 is an eigenvalue, then 𝑎−𝑏 𝑖 will also be an eigenvalue, where 𝑖 is the
“imaginary number” 𝑖 =

√
−1. For each eigenvalue 𝜆, the corresponding

eigenvectors are found as the solutions to (10.20). We will look at (10.22)
in more detail shortly.
Example 10.10 The eigenvalues of

𝐴 = ⎡⎢
⎣

2 1 0
−1 2 0
0 0 3

⎤⎥
⎦

are the solutions to the equation

det(𝜆𝐼3 −𝐴) = ∣
𝜆 − 2 −1 0
1 𝜆 − 2 0
0 0 𝜆 − 3

∣

= (𝜆 − 3)((𝜆 − 2)2 + 1)
= (𝜆 − 3)(𝜆 − (2 + 𝑖))(𝜆 − (2 − 𝑖)) = 0 .

The eigenvalues are 𝜆1 = 3, 𝜆 = 2 + 𝑖 and 𝜆 = 2 − 𝑖. The eigenvectors
associated with 𝜆1 = 3 are the solutions to (10.20) with 𝜆1 = 3, i.e.

(3𝐼3 −𝐴)𝑥1 = ⎡⎢
⎣

1 −1 0
1 1 0
0 0 0

⎤⎥
⎦
⎡⎢
⎣

𝑥11
𝑥12
𝑥13

⎤⎥
⎦

= ⎡⎢
⎣

0
0
0
⎤⎥
⎦
.
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The solution to this equation are all vectors 𝑥1 such that 𝑥11−𝑥12 = 0 and
𝑥11+𝑥12 = 0 (which together implies 𝑥11 = 𝑥12 = 0), with 𝑥13 “free”. That
is, the eigenvectors are all vectors

𝑥1 = [0 0 𝑠]T , 𝑠 ∈ ℂ .

For 𝜆2 = 2 − 𝑖, (10.20) becomes

((2 − 𝑖)𝐼3 −𝐴)𝑥2 = ⎡⎢
⎣

−𝑖 −1 0
1 −𝑖 0
0 0 −1 − 𝑖

⎤⎥
⎦
⎡⎢
⎣

𝑥21
𝑥22
𝑥23

⎤⎥
⎦

= ⎡⎢
⎣

0
0
0
⎤⎥
⎦
.

The solutions are all vectors 𝑥2 satisfying

−𝑖𝑥21 − 𝑥22 = 0
𝑥21 − 𝑖𝑥22 = 0

(−1 − 𝑖)𝑥23 = 0

The third equation says that 𝑥23 must be 0. Multiplying the first equation
by 𝑖 gives the second equation, so 𝑥21 and 𝑥22 must satisfy 𝑥21 − 𝑖𝑥22 = 0.
Letting 𝑥21 be the free parameter 𝑠, we see that the solutions are all vectors
of the form

𝑥2 = [𝑠 −𝑖𝑠 0]T , 𝑠 ∈ ℂ .
This is a 1-dimensional vector subspace (it has one free parameter) of the
vector space ℂ3. Notice that there are no real eigenvectors associated with
𝜆2 = 2−𝑖. As an exercise, you should show that the eigenvectors associated
with the eigenvalue 𝜆3 = 2 + 𝑖 are all vectors of the form

𝑥3 = [𝑠 𝑖𝑠 0]T , 𝑠 ∈ ℂ .

Eigenvectors are sometimes required to have unit norm5 in addition to
satisfying 𝐴𝑥 = 𝜆𝑥. We will sometimes use unit eigenvectors specifically,
but our presentation so far emphasizes that the set of eigenvectors corre-
sponding to any eigenvalue comprise entire subspaces. Statistical libraries
will return eigenvectors with unit norm, and real-valued if possible. In

5The norm of a complex-valued vector

𝑥1 = [𝑥11 𝑥12 … 𝑥1𝑛]
T where 𝑥1𝑗 = 𝑎𝑗 + 𝑏𝑗 𝑖 , 𝑗 = 1, 2,… ,𝑛 ,

is defined as
‖𝑥1‖ = (|𝑥11|2 + |𝑥12|2 +⋯+ |𝑥1𝑛|2)

1
2

where |𝑥1𝑗|2 = 𝑎2
𝑗 + 𝑏2𝑗 . It can be computed as the square root of 𝑥T

1 𝑥1 where 𝑥T
1 is the

“conjugate transpose” of 𝑥1, i.e., transpose 𝑥1 and replace each complex entry with its
conjugate.
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Example 10.10, the eigenvectors corresponding to 𝜆1 = 3, 𝜆2 = 2 − 𝑖 and
𝜆3 = 2 + 𝑖 would be reported as, respectively,

𝑥1 = ⎡⎢
⎣

0
0
1
⎤⎥
⎦

, 𝑥2 =
⎡
⎢⎢
⎣

1√
2

− 1√
2 𝑖

0

⎤
⎥⎥
⎦

, 𝑥3 =
⎡
⎢⎢
⎣

1√
2

1√
2 𝑖
0

⎤
⎥⎥
⎦

.

10.3.2 The Eigendecomposition
The 𝑛 eigenvalues 𝜆𝑗 of a 𝑛×𝑛 matrix 𝐴 and their corresponding eigenvec-
tors 𝑥𝑗 satisfy the equations

𝐴𝑥𝑗 = 𝜆𝑗𝑥𝑗 , 𝑖 = 𝑗, 2, ..., 𝑛 .

These 𝑛 equations can be summarized into a single equation as

𝐴 [𝑥1 𝑥2 … 𝑥𝑛] = [𝑥1 𝑥2 … 𝑥𝑛]
⎡
⎢⎢
⎣

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛

⎤
⎥⎥
⎦

or 𝐴𝑆 = 𝑆Λ. Assuming that 𝑆 is invertible, we get the eigendecomposition

𝐴 = 𝑆Λ𝑆−1 . (10.23)

Example 10.11 The eigendecomposition of matrix 𝐴 in Example 10.10 is

⎡⎢
⎣

2 1 0
−1 2 0
0 0 3

⎤⎥
⎦⏟⏟⏟⏟⏟

𝐴

= ⎡⎢
⎣

𝑢 𝑣 0
−𝑢𝑖 𝑣𝑖 0
0 0 𝑠

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝑆

⎡⎢
⎣

2 − 𝑖 0 0
0 2 + 𝑖 0
0 0 3

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

Λ

⎡⎢⎢
⎣

1
2𝑢 − 1

2𝑢𝑖 0
1
2𝑣

1
2𝑣𝑖 0

0 0 1
𝑠

⎤⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝑆−1

.

You can verify on your own that 𝑆−1 is indeed the inverse of 𝑆. Note
that you can arrange the eigenvectors in 𝑆 in any order as long as the
corresponding eigenvalues are placed in Λ from top left to botton right in
the same order.

In forming (10.23), we assumed that 𝑆 is non-singular, which means that
the columns of 𝑆, i.e., the eigenvectors 𝑥1, 𝑥2,… , 𝑥𝑛, are independent. It
turns out that for some matrices we cannot find 𝑛 independent eigenvectors.
Such matrices cannot be factorized as (10.23). They are not diagonalizable.

Non-diagonalizability may occur if there are repeated eigenvalues. It
can be shown that if all of the eigenvalues of a matrix have distinct values,
then there are 𝑛 independent eigenvectors, one per eigenvalue. All matrices
that have 𝑛 distinct eigenvalues (no repeats) are therefore diagonalizable.
If there are repeated eigenvalues, then diagonalizability depends on the
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“multiplicities” of the eigenvalues. If 𝑟 eigenvalues share the same value (we
call 𝑟 the algebraic multiplicity of the eigenvalue), then diagonalizability
requires that the eigenspace associated with that eigenvalue have dimension
𝑟 (we call this the geometric multiplicity of the eigenvalue). This then
allows us to choose 𝑟 independent eigenvectors from the eigenspace for the
𝑟 eigenvalues with the same value. If the geometric multiplicity of the
repeated eigenvalue is lower than its algebraic multiplicity, the matrix is
not diagonalizable.
Example 10.12 You can easily show that the matrix

𝐴 = ⎡⎢
⎣

3 0 0
0 3 0
0 0 1

⎤⎥
⎦

and 𝐵 = ⎡⎢
⎣

3 1 0
0 3 0
0 0 1

⎤⎥
⎦

both have eigenvalues 𝜆1 = 3, 𝜆2 = 3, and 𝜆3 = 1. The eigenvalue 𝜆 = 3
has algebraic multiplicity 2 for both 𝐴 and 𝐵. Consider first matrix 𝐴. For
𝜆3 = 1, we have

(𝐴 − 𝜆3𝐼3)𝑥3 = ⎡⎢
⎣

2 0 0
0 2 0
0 0 0

⎤⎥
⎦
⎡⎢
⎣

𝑥31
𝑥32
𝑥33

⎤⎥
⎦

= ⎡⎢
⎣

0
0
0
⎤⎥
⎦

or 𝑥31 = 0, 𝑥32 = 0, with 𝑥33 taking any value. That is, the eigenvectors
are all vectors of the form

𝑥3 = ⎡⎢
⎣

𝑥31
𝑥32
𝑥33

⎤⎥
⎦

= ⎡⎢
⎣

0
0
𝑠
⎤⎥
⎦
.

For 𝜆1 = 𝜆2 = 3, we have

(𝜆𝑖𝐼3 −𝐴)𝑥𝑖 = ⎡⎢
⎣

0 0 0
0 0 0
0 0 2

⎤⎥
⎦
⎡⎢
⎣

𝑥𝑖1
𝑥𝑖2
𝑥𝑖3

⎤⎥
⎦

= ⎡⎢
⎣

0
0
0
⎤⎥
⎦
, 𝑖 = 1, 2 ,

which says that 𝑥𝑖3 = 0, and 𝑥𝑖1 and 𝑥𝑖2 can take any values. The eigen-
vectors corresponding to 𝜆1 = 3 make up the 2-dimensional subspace com-
prising vectors of the form

𝑥𝑖 = ⎡⎢
⎣

𝑥𝑖1
𝑥𝑖2
𝑥𝑖3

⎤⎥
⎦

= ⎡⎢
⎣

𝑠1
𝑠2
0
⎤⎥
⎦
, 𝑖 = 1, 2 .

Because the geometric multiplicity of this eigenvalue is equal to its algebraic
multiplicity, we can find two independent eigenvectors for 𝜆1 = 𝜆2 = 3, e.g.,

𝑥1 = ⎡⎢
⎣

𝑞
0
0
⎤⎥
⎦

and 𝑥2 = ⎡⎢
⎣

0
𝑟
0
⎤⎥
⎦

, 𝑞, 𝑟 ≠ 0.
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We have the eigendecomposition

𝐴 = ⎡⎢
⎣

3 0 0
0 3 0
0 0 1

⎤⎥
⎦

= ⎡⎢
⎣

𝑞 0 0
0 𝑟 0
0 0 𝑠

⎤⎥
⎦
⎡⎢
⎣

3 0 0
0 3 0
0 0 1

⎤⎥
⎦
⎡⎢
⎣

1/𝑞 0 0
0 1/𝑟 0
0 0 1/𝑠

⎤⎥
⎦
.

For matrix 𝐵, the eigenvectors 𝑥3 corresponding to 𝜆3 = 1 are the same as
for matrix 𝐴. However, for 𝜆1 = 𝜆2 = 3, we have

(𝜆𝑖𝐼3 −𝐵)𝑥𝑖 = ⎡⎢
⎣

0 −1 0
0 0 0
0 0 2

⎤⎥
⎦
⎡⎢
⎣

𝑥𝑖1
𝑥𝑖2
𝑥𝑖3

⎤⎥
⎦

= ⎡⎢
⎣

0
0
0
⎤⎥
⎦

, 𝑖 = 1, 2 .

which says that 𝑥𝑖2 = 0 and −2𝑥𝑖3 = 0, or 𝑥𝑖3 = 0. Only 𝑥𝑖1 may take a free
parameter. The eigenvectors corresponding to the eigenvalues 𝜆1 = 𝜆2 = 3
all take the form

𝑥𝑖 = ⎡⎢
⎣

0
𝑞
0
⎤⎥
⎦

, 𝑖 = 1, 2.

This space of eigenvectors only has dimension 1. The geometric multiplicity
is less than the algebraic multiplicity for 𝜆1 = 𝜆2 = 3, so we cannot find
two independent eigenvectors for these eigenvalues. This matrix is not
diagonalizable.

10.3.3 Eigenvalues and Matrix Properties
10.3.3.1 Eigenvalues and the Determinant The relationship between the
determinant of a matrix and its eigenvalues is easy to see. Denoting
det(𝜆𝐼𝑛 −𝐴) by 𝜌(𝜆), we have 𝜌(0) = det (−𝐴) = (−1)𝑛 det(𝐴). From

𝜌(𝜆) = det(𝜆𝐼𝑛 −𝐴) = (𝜆 − 𝜆1)(𝜆 − 𝜆2) × ⋯ × (𝜆 − 𝜆𝑛) (10.24)

we get 𝜌(0) = (−1)𝑛𝜆1𝜆2 ×⋯× 𝜆𝑛. It follows that

det(𝐴) = 𝜆1𝜆2 ×⋯× 𝜆𝑛 . (10.25)

A corollary of result (10.25) is that 𝐴 is has an inverse if and only if
none of its eigenvalues is zero.

10.3.3.2 Eigenvalues and Trace To show that the eigenvalues sum to the
trace, we focus on the coefficient 𝜁𝑛−1 in the polynomial

𝜌(𝜆) = det(𝜆𝐼𝑛 −𝐴) = 𝜆𝑛 + 𝜁𝑛−1𝜆𝑛−1 +⋯+ 𝜁1𝜆 + 𝜁0 (10.26)
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The Laplace expansion of 𝜌(𝜆) = det(𝜆𝐼𝑛 −𝐴) along the first column is

𝜌(𝜆) =
∣
∣
∣
∣
∣

𝜆 − 𝑎11 𝑎12 𝑎13 … 𝑎1𝑛
𝑎21 𝜆 − 𝑎22 𝑎13 … 𝑎1𝑛
𝑎31 𝑎32 𝜆 − 𝑎33 … 𝑎1𝑛
⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 … 𝜆− 𝑎𝑛𝑛

∣
∣
∣
∣
∣

= (𝜆 − 𝑎11)𝐶11 + 𝑎21𝐶21 +⋯+ 𝑎𝑛1𝐶𝑛1

(10.27)

where 𝐶𝑘𝑗 is the (𝑘, 𝑗)th cofactor of 𝜆𝐼𝑛−𝐴. You can fully work this out to
get all the coefficients 𝜁0, 𝜁1,… , 𝜁𝑛−1 in (10.26), but we shall note only that
the coefficient on 𝜆𝑛 is 1, and the coefficient 𝜁𝑛−1 on 𝜆𝑛−1 is −trace(𝐴). To
see the latter, note that in the column 1 expansion in (10.27), only the first
term (𝜆−𝑎11)𝐶11 contains 𝜆𝑛−1. This is because in computing the (𝑘, 1)th
cofactor, we remove the 𝑘th row and 1st column of 𝜆𝐼𝑛 − 𝐴. For 𝑘 > 1,
this removes both the column containing 𝜆 − 𝑎11 and the row containing
𝜆 − 𝑎𝑘𝑘. The highest power of 𝜆 in 𝐶𝑘1, 𝑘 > 1, will be at most 𝑛 − 2. We
can therefore write 𝜌(𝜆) as

𝜌(𝜆) = (𝜆 − 𝑎11)𝐶11 + order (𝑛 − 2) polynomial in 𝜆 . (10.28)

Repeating this argument as we further expand 𝐶11 along the first columns,
we get

𝜌(𝜆) =
𝑛
∏
𝑘=1

(𝜆 − 𝑎𝑘𝑘) + order (𝑛 − 2) polynomial in 𝜆. (10.29)

The 𝜆𝑛−1 terms in (10.29) arise only in ∏𝑛
𝑖=1(𝜆 − 𝑎𝑘𝑘), and only when the

𝑎𝑘𝑘 in each of the (𝜆−𝑎𝑘𝑘) terms is multiplied with the 𝜆 in the other 𝑛−1
(𝜆 − 𝑎𝑘𝑘) terms. Consolidating these 𝜆𝑛−1 terms over 𝑘 = 1, 2,… , 𝑛, we
find that the coefficient on 𝜆𝑛−1 to be

𝜁𝑛−1 = −(𝑎11 + 𝑎22 +⋯+ 𝑎𝑛𝑛) = −trace(𝐴) .

Applying the same argument to (10.24), we find the coefficient of 𝜆𝑛−1 there
to be −(𝜆1 + 𝜆2 +⋯+ 𝜆𝑛). It follows that

trace(𝐴) = 𝜆1 + 𝜆2 +⋯+ 𝜆𝑛 .

10.3.3.3 Eigenvalues and Rank We know that a full rank 𝑛 × 𝑛 matrix
will have no zero-valued eigenvalues, and the presence of zero-valued eigen-
values implies a rank-deficient matrix, but this result alone does not tell
us the exact rank of a rank-deficient matrix. However, if a square matrix
is diagonalizable, then 𝐴 = 𝑆Λ𝑆−1 where 𝑆 is full rank. This means that
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rank(𝐴) = rank(Λ). Since Λ is diagonal, its rank is just the number of non-
zero elements along the diagonal. In other words, if 𝐴 is diagonalizable,
then rank(𝐴) is equal to the number of non-zero eigenvalues it possesses.

We emphasize that this result only holds for diagonalizable matrices.
The non-diagonalizable matrix

𝐴 = [0 1
0 0]

has rank 1, but has no non-zero eigenvalues.
10.3.3.4 Eigendecomposition of Symmetric Matrices Symmetric matri-
ces have the convenient property that (i) they are always diagonalizable,
and (ii) they always have real-valued eigenvalues. Furthermore, (iii) we
can always construct a matrix of (real-valued) eigenvectors that are not
just invertible, but also orthonormal. That is, we can write any given
symmetric matrix 𝐴 as

𝐴 = 𝑄Λ𝑄T where 𝑄T𝑄 = 𝐼𝑛
and where the diagonal elements of Λ are real. This eigendecomposition is
also called the Spectral Decomposition of 𝐴.

We omit proofs of these results, and make do with the 2 × 2 case as an
illustration. Suppose

𝐴 = [𝑎 𝑐
𝑐 𝑏] .

You can easily show, by finding the roots of det(𝐴 − 𝜆𝐼2) = 0, that the
eigenvalues of 𝐴 are

𝜆1,2 = 𝑎 + 𝑏 ±√(𝑎 + 𝑏)2 − 4(𝑎𝑏 − 𝑐2)
2 = 𝑎 + 𝑏 ±√(𝑎 − 𝑏)2 + 4𝑐2

2 .

Since (𝑎−𝑏)2+4𝑐2 ≥ 0, 𝜆1 and 𝜆2 are always real-valued. If (𝑎−𝑏)2+4𝑐2 > 0,
then 𝜆1 ≠ 𝜆2. Suppose this is the case, and suppose 𝑥1 and 𝑥2 are the
corresponding eigenvectors. We have 𝐴𝑥1 = 𝜆1𝑥1 and 𝐴𝑥2 = 𝜆2𝑥2. Then

(𝜆1𝑥1)T𝑥2 = (𝐴𝑥1)T𝑥2 = 𝑥T
1 𝐴T𝑥2 = 𝑥T

1 𝐴𝑥2 = 𝑥T
1 (𝜆2𝑥2).

Rearranging, we get (𝜆1 − 𝜆2)𝑥T
1 𝑥2 = 0. Since 𝜆1 ≠ 𝜆2, it must be that

𝑥T
1 𝑥2 = 0, which says that 𝑥1 and 𝑥2 are orthogonal. Then the 2×2 matrix

𝑄 = [
𝑥1
‖𝑥1‖

𝑥2
‖𝑥2‖]

is the orthogonal matrix such that 𝐴 = 𝑄Λ𝑄T.
If 𝜆1 = 𝜆2, then it must be (𝑎 − 𝑏)2 + 4𝑐2 = 0, which is possible only if

𝑐 = 0 and 𝑎 = 𝑏. Then the matrix is

𝐴 = [𝑎 0
0 𝑎]
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with eigenvalues 𝜆1 = 𝜆2 = 𝑎. The equation (𝐴 − 𝜆𝑖𝐼𝑛)𝑥𝑖 = 0 reduces
to 0𝑥𝑖 = 0, which says that any vector in ℝ2 is an eigenvector, and we
are free to select two orthogonal eigenvectors from this space (e.g., select
𝑥1 = [1 0]T and 𝑥2 = [0 1]T), and set 𝑄 = [𝑥1 𝑥2] which is certainly
orthogonal.

Example 10.13 The eigendecomposition of symmetric matrices gives us
some insight into the transformation made to a vector 𝑥 when pre-multiplied
by a symmetric matrix 𝐴. This insight may be helpful to you when thinking
about principal components, which we will discuss shortly.

Suppose 𝐴 is symmetric 𝑛 × 𝑛 with eigendecomposition

𝐴 = 𝑄Λ𝑄T

where Λ = diag(𝜆1,… , 𝜆𝑛) is the diagonal matrix of eigenvalues, and 𝑄 is
an orthogonal matrix whose columns are the corresponding eigenvectors

𝑄 = [𝑞1 𝑞2 … 𝑞𝑛] where 𝐴𝑞𝑖 = 𝜆𝑖𝑞𝑖 , 𝑖 = 1,… , 𝑛 .

The fact that 𝑄 is non-singular (since 𝑄T𝑄 = 𝐼𝑛) means that it has full
rank, and its columns span the entire space ℝ𝑛. In other words, the eigen-
vectors in 𝑄 form an orthonormal basis for ℝ𝑛. Any vector 𝑥 ∈ ℝ𝑛 can
therefore be written as a linear combination of the eigenvectors, i.e., for
every 𝑥 ∈ ℝ𝑛, there is a 𝑐 ∈ ℝ𝑛 such that

𝑥 = 𝑄𝑐 = [𝑞1 𝑞2 … 𝑞𝑛]
⎡
⎢⎢
⎣

𝑐1
𝑐2
⋮
𝑐𝑛

⎤
⎥⎥
⎦

= 𝑐1𝑞1 + 𝑐2𝑞2 +⋯+ 𝑐𝑛𝑞𝑛 . (10.30)

You can think of the eigenvectors as forming an alternative orthonormal
coordinate axes for ℝ𝑛. The orthogonal basis associated with the usual
Cartesian coordinate system is the orthonormal set of vectors {𝑒1, 𝑒2,… , 𝑒𝑛}
where 𝑒𝑗 is the vector whose 𝑗th term is 1, and all other terms 0. The vector
𝑥 ∈ ℝ𝑛 can be written as

𝑥 =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮
𝑥𝑛

⎤
⎥⎥
⎦

= 𝑥1𝑒1 + 𝑥2𝑒2 +⋯+ 𝑥𝑛𝑒𝑛 .

The vectors in 𝑄 — the eigenvectors of 𝐴 — form another orthonormal
coordinate axes, under which the “address” of the point 𝑥 is 𝑐. We can
obtain 𝑥 as the linear combination in (10.30).



August 31, 2024 18:18 book-9x6 Baydur-Preve-Tay index page 413

Projections and Matrix Factorizations 413

Consider now the product 𝐴𝑥. We have

𝐴𝑥 = 𝑄Λ𝑄T𝑄𝑐 = 𝑄Λ𝑐

= [𝑞1 𝑞2 … 𝑞𝑛]
⎡
⎢⎢
⎣

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑐1
𝑐2
⋮
𝑐𝑛

⎤
⎥⎥
⎦

= 𝜆1𝑐1𝑞1 + 𝜆2𝑐2𝑞2 +⋯+ 𝜆𝑛𝑐𝑛𝑞𝑛 .

The weights on the eigenvectors in the linear combination (10.30) that
forms 𝑥 are multiplied by the corresponding eigenvalues. In other words,
the product 𝐴𝑥, where 𝐴 is symmetric, transforms the vector 𝑥 by stretch-
ing/compressing the vector along the axes formed by the eigenvectors, by
factors equal to the corresponding eigenvalues.

Similar arguments can be made to describe the effect of premultiplying
𝑥 by any diagonalizable matrix, except that the eigenvectors need not be
orthogonal, and you may have to work with complex numbers!

10.3.3.5 Eigenvalues and Positive Definiteness A symmetric 𝑛 × 𝑛 ma-
trix 𝐴 is positive definite if 𝑐T𝐴𝑐 > 0 for all 𝑛-vectors 𝑐 ≠ 0𝑛. It is positive
semidefinite if 𝑐T𝐴𝑐 ≥ 0 for all 𝑛-vectors 𝑐 ≠ 0𝑛. From the eigendecompo-
sition 𝐴 = 𝑄Λ𝑄𝑇 , define

𝑑 =
⎡
⎢⎢
⎣

𝑑1
𝑑2
⋮
𝑑𝑛

⎤
⎥⎥
⎦

= 𝑄T𝑐 .

Since 𝑄T is full rank, 𝑐 ≠ 0𝑛 ⇔ 𝑑 ≠ 0𝑛. Then

𝑐T𝐴𝑐 = 𝑐T𝑄Λ𝑄𝑇 𝑐 = 𝑑TΛ𝑑 = 𝜆1𝑑2
1 +⋯+ 𝜆𝑛𝑑2

𝑛 .

It follows that 𝐴 is positive definite if and only if 𝜆𝑘 > 0 for all 𝑘 = 1, 2,… , 𝑛.
Suppose 𝜆𝑘 > 0 for all 𝑘 = 1, 2,… , 𝑛. Then

𝑐 ≠ 0𝑛 ⇒ 𝑑 ≠ 0𝑛 ⇒ 𝑑2
𝑘 > 0 for at least one 𝑘 = 1, 2,… , 𝑛 ⇒ 𝑐T𝐴𝑐 > 0 .

If 𝜆𝑘 ≤ 0 for some 𝑘 = 1, 2,… , 𝑛, then we can find 𝑑 ≠ 0𝑛, and therefore
𝑐 ≠ 0𝑛, such that 𝑐T𝐴𝑐 ≤ 0. A similar argument shows that 𝐴 is positive
semidefinite if and only if 𝜆𝑘 ≥ 0 for all 𝑘 = 1, 2,… , 𝑛.
10.3.3.6 Eigenvalues and Rank, Again Since all symmetric matrices are
diagonalizable, and the rank of a diagonalizable matrix is equal to its num-
ber of non-zero eigenvalues, we have the convenient property that the
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rank of a symmetric matrix is equal to the number of non-zero eigenval-
ues that it possesess. If matrix 𝐴 is non-diagonalizable, we can make
use of the fact that 𝐴T𝐴 is symmetric (and therefore diagonalizable), and
rank(𝐴) = rank(𝐴T𝐴), to get the result that the rank of 𝐴 is equal to the
number of non-zero eigenvalues in 𝐴T𝐴.
10.3.3.7 Further Facts about Eigenvalues We state a few additional facts
about eigenvalues (and eigenvectors) that you are asked to prove as exer-
cises. These apply to all matrices regardless of symmetry.
(a) The transpose of a matrix has the same eigenvalues as the matrix itself.
(b) If 𝐴 is 𝑛 × 𝑛 and non-singular with eigenvalues 𝜆𝑘, 𝑘 = 1, 2,… , 𝑛, then
the eigenvalues of 𝐴−1 are 1/𝜆𝑘, 𝑘 = 1, 2,… , 𝑛.
(c) The eigenvalues of idempotent matrices (matrices such that 𝐴𝐴 = 𝐴)
take values 1 and 0 only. An implication of this is that the trace of an idem-
potent matrix is equal to the number of non-zero eigenvalues it possesses.
Projection matrices are examples of idempotent matrices.
(d) Although idempotent matrices need not be symmetric, e.g.,

𝐴 = [1 0
1 0]

is idempotent but not symmetric, idempotent matrices are always diagonal-
izable.
(e) The rank of an idempotent matrix is equal to its trace.
Example 10.14 The eigenvalues of

𝐴 = ⎡⎢
⎣

1 2 0
2 1 −2
0 −2 1

⎤⎥
⎦

are 𝜆1 = 1+2
√
2, 𝜆2 = 1 and 𝜆3 = 1−2

√
2, with corresponding eigenvectors

𝑥1 = ⎡⎢
⎣

𝑠√
2𝑠

−𝑠
⎤⎥
⎦

, 𝑥2 = ⎡⎢
⎣

𝑠
0
𝑠
⎤⎥
⎦

, 𝑥3 = ⎡⎢
⎣

𝑠
−
√
2𝑠

−𝑠
⎤⎥
⎦
.

You can easily verify that the product of the eigenvalues is equal to the
determinant of 𝐴, and the sum of the eigenvalues is equal to the trace of 𝐴.
Since 𝐴 is symmetric, the eigenvectors should be mutually orthogonal, and
you can verify this to be the case. Selecting 𝑠 = 1 (so that the eigenvectors
are real) and then normalizing, we get the specific orthonormal eigenvectors

𝑥1 = ⎡⎢⎢
⎣

1
2
1√
2

− 1
2

⎤⎥⎥
⎦

, 𝑥2 =
⎡⎢⎢
⎣

1√
2
0
1√
2

⎤⎥⎥
⎦

, 𝑥3 = ⎡⎢⎢
⎣

1
2

− 1√
2

− 1
2

⎤⎥⎥
⎦
.
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As an exercise, you should verify (by hand or otherwise) that 𝐴 = 𝑄Λ𝑄T

where

𝑄 = [𝑥1 𝑥2 𝑥3] =
⎡⎢⎢
⎣

1
2

1√
2

1
2

1√
2 0 − 1√

2
− 1

2
1√
2 − 1

2

⎤⎥⎥
⎦

and Λ =
⎡⎢⎢
⎣

1 + 2
√
2 0 0

0 1 0
0 0 1 − 2

√
2

⎤⎥⎥
⎦
.

Note that your statistical package may multiply one or more of these eigen-
vectors by −1. Since there are no zero eigenvalues, the matrix 𝐴 has full
rank. Since there are eigenvalues of both signs, the matrix 𝐴 is neither
positive semidefinite or negative semidefinite.

10.3.4 Principal Component Analysis
One reason why the eigendecompositions of symmetric matrices are of par-
ticular interest is that variance matrices are symmetric, and eigenvalues
and eigenvectors of variance matrices have useful interpretations.

Suppose 𝑥 is a 𝑘-vector of zero-mean random variables with the 𝑘 × 𝑘
variance matrix 𝑣𝑎𝑟(𝑥). Suppose 𝑣𝑎𝑟(𝑥) = 𝑄Λ𝑄T where

Λ = diag(𝜆1, 𝜆2,… , 𝜆𝑘) and 𝑄 = [𝑞1 𝑞2 … 𝑞𝑘] ,

and where

𝑞𝑗 =
⎡
⎢⎢
⎣

𝑞1𝑗
𝑞2𝑗
⋮

𝑞𝑘𝑗

⎤
⎥⎥
⎦
, 𝑗 = 1, 2,… , 𝑘

are the 𝑘 orthonormal eigenvectors corresponding to the eigenvalues. We
will label the eigenvalues in descending order 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑘 ≥ 0 (there
are no negative eigenvalues since the variance matrix is positive semidefi-
nite). Let 𝑦 = 𝑄T𝑥, i.e.,

𝑦 =
⎡
⎢⎢
⎣

𝑦1
𝑦2
⋮
𝑦𝑘

⎤
⎥⎥
⎦

=
⎡
⎢⎢⎢
⎣

𝑞T
1 𝑥
𝑞T
2 𝑥
⋮

𝑞T
𝑘 𝑥

⎤
⎥⎥⎥
⎦

= 𝑄T𝑥 ,

is an 𝑘-vector of random variables, each a linear combination of the random
variables in 𝑥. This random vector 𝑦 has variance matrix

𝑣𝑎𝑟(𝑦) = 𝑣𝑎𝑟(𝑄T𝑥) = 𝑄T𝑣𝑎𝑟(𝑥)𝑄 = 𝑄T𝑄Λ𝑄T𝑄 = Λ .

That is, the random variables in 𝑦 are mutually uncorrelated, with variances
equal to the corresponding eigenvalues down the diagonal of Λ. Moreover,
it is fairly straightforward to show (see next chapter) that
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• 𝑦1 = 𝑞T
1 𝑥 is the linear combination of the variables in 𝑥 with the

largest variance subject to ‖𝑞1‖ = 1,
• 𝑦2 = 𝑞T

2 𝑥 is the linear combination of the variables in 𝑥 with the next
largest variance subject to ‖𝑞2‖ = 1 and 𝑞T

2 𝑞1 = 0,
• 𝑦3 = 𝑞T

3 𝑥 is the linear combination of the variables in 𝑥 with the third
largest variance subject to ‖𝑞3‖ = 1, 𝑞T

3 𝑞1 and 𝑞T
3 𝑞2,

and so on.
This argument carries over to sample variance matrices. Suppose 𝑋 is

an 𝑛 × 𝑘 matrix with columns containing the 𝑛 centered observations of
each of 𝑘 variables. “Centered observations” means that the sample means
of each of the variable have been removed, i.e.,

𝑋 = [ ̃𝑥∗1 ̃𝑥∗2 … ̃𝑥∗𝑘] where ̃𝑥∗𝑗 =
⎡
⎢⎢
⎣

𝑥1𝑗 − 𝑥𝑗
𝑥2𝑗 − 𝑥𝑗

⋮
𝑥𝑛𝑗 − 𝑥𝑗

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

̃𝑥1𝑗
̃𝑥2𝑗
⋮
̃𝑥𝑛𝑗

⎤
⎥⎥
⎦

and where 𝑥𝑗 = (1/𝑛)∑𝑛
𝑖 𝑥𝑖𝑗 is the sample mean of the variable 𝑗 observa-

tions. Then

1
𝑛 − 1𝑋

T𝑋 =
⎡
⎢
⎢
⎢
⎣

1
𝑛−1 ∑𝑛

𝑖=1 ̃𝑥2
𝑖1

1
𝑛−1 ∑𝑛

𝑖=1 ̃𝑥𝑖1 ̃𝑥𝑖2 … 1
𝑛−1 ∑𝑛

𝑖=1 ̃𝑥𝑖1 ̃𝑥𝑖𝑘
1

𝑛−1 ∑𝑛
𝑖=1 ̃𝑥𝑖2 ̃𝑥𝑖1

1
𝑛−1 ∑𝑛

𝑖=1 ̃𝑥2
𝑖2 … 1

𝑛−1 ∑𝑛
𝑖=1 ̃𝑥𝑖1 ̃𝑥𝑖𝑘

⋮ ⋮ ⋱ ⋮
1

𝑛−1 ∑𝑛
𝑖=1 ̃𝑥𝑖𝑛 ̃𝑥𝑖1

1
𝑛−1 ∑𝑛

𝑖=1 ̃𝑥𝑖𝑛 ̃𝑥𝑖2 … 1
𝑛−1 ∑𝑛

𝑖=1 ̃𝑥2
𝑖𝑛

⎤
⎥
⎥
⎥
⎦

contains all of the sample variances and sample covariances of the variables.
If 1

𝑛−1𝑋T𝑋 = 𝑄Λ𝑄T where the diagonal elements of the diagonal matrix Λ
are the eigenvalues of 1

𝑛−1𝑋T𝑋 and the columns of 𝑄 are the corresponding
orthonormal eigenvectors, then 𝑌 where

𝑌 = 𝑋𝑄

i.e., [𝑦1 𝑦2 … 𝑦𝑘] = 𝑋 [𝑞1 𝑞2 … 𝑞𝑘]

= [𝑋𝑞1 𝑋𝑞2 … 𝑋𝑞𝑘]

is a 𝑛 × 𝑘 matrix containing observations on 𝑘 variables, each of which a
linear combination of the observations of the 𝑘 variables in 𝑋, and whose
sample variance matrix is

1
𝑛 − 1𝑌

T𝑌 = 1
𝑛 − 1𝑄

T𝑋T𝑋𝑄 = 𝑄T (( 1
𝑛−1)𝑋T𝑋)𝑄 = 𝑄T𝑄Λ𝑄T𝑄 = Λ .

That is, the columns of 𝑌 are mutually uncorrelated indices each computed
as a linear combination of the columns of 𝑋. Furthermore, the first column
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𝑦1 is the index that contains the most variation across observations 𝑖 =
1, 2,… , 𝑛, the second column contains the second most variation, and so on.
We call these indices the principal components of 𝑋.6

Example 10.15 Principal Component Analysis (PCA) can help us under-
stand the way observational units differ in a data set. Take for example the
51 × 14 data matrix in causes-of-death-by-state.csv, which contains
the age-adjusted number of deaths per 100,000, all races, both sexes, all
ages, over the period 2016-2020, across the 51 US states plus District of
Columbia (rows) and 14 causes of death (columns): accidents & adverse ef-
fects (accident), Alzheimer’s disease (Alzheimers), cancer, cerebrovascular
diseases (cerebrovascular), chronic lower respiratory disease (respiratory),
chronic liver disease & cirrhosis (liver), diabetes mellitus (diabetes), heart
disease (heart), momicide & legal intervention (homicide), influenza, kidney
disease - nephritis & nephrosis (kidney), pneumonia, septicemia, suicide &
self-inflicted injury (suicide). 7

Suppose we want to create a few “causes of death” indices that capture
meaningful differences in causes of death across states. One way is to group
the causes into interpretable groups, perhaps vascular diseases (heart and
cerebrovascular), trauma-related causes (accident, homicide, suicide), and
disease-related (all others) and create an index for each group. Another way
is to use PCA to create uncorrelated cause-of-death indices that measure
the ways the states differ most in terms of causes of death.

The PCA method proceeds as follows:
First we center the data matrix so that each column has zero sample

mean. We sometimes also scale the data so that the columns have unit sam-
ple variance. This is because PCA quite naturally places more weight on
variables with larger sample variances. In our example, we do not scale the
columns because the data is age-adjusted number of deaths per 100, 000
people, so variation due to different age profiles and populations across
states have already been accounted for. The remaining differences in varia-
tion across states per disease are meaningful for our purpose, so we do not
further standardize the data. Let 𝑋 denote the centered data set.

Second, we find the eigendecomposition of the sample variance matrix

(1/𝑛)𝑋T𝑋 = 𝑄Λ𝑄T

6If instead of the eigendecomposition of 1
𝑛−1𝑋T𝑋 we used the eigendecomposition

𝑋T𝑋 = 𝑄Λ𝑄T, then

1
𝑛 − 1𝑌 T𝑌 = 1

𝑛 − 1𝑄T𝑋T𝑋𝑄 = 1
𝑛− 1𝑄T𝑄Λ𝑄T𝑄 = 1

𝑛− 1Λ .

The principal components, i.e., the columns of 𝑋𝑄 do not change, but the diagonal
elements of Λ now contain 𝑛−1 times the sample variance of the principal components.

7Compiled from https://hdpulse.nimhd.nih.gov.
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10.3.5 The Singular Value Decomposition
We come finally to the singular value decomposition (SVD) which is
an eigendecomposition that applies to all matrices, regardless of “shape” or
rank. Let 𝐴 be a 𝑛 × 𝑘 matrix of rank 𝑟 ≤ min{𝑛, 𝑘}. The 𝑘 × 𝑘 matrix
𝐴T𝐴 is symmetric, positive semidefinite and rank 𝑟 and so it has 𝑟 positive
eigenvalues 𝜎2

1 ≥ 𝜎2
2 ≥ ⋯ ≥ 𝜎2

𝑟 > 0 and 𝑘 − 𝑟 zero-valued eigenvalues
𝜎2
𝑟+1 = …𝜎2

𝑘 = 0. Let 𝑣1, 𝑣2,… 𝑣𝑟 be the eigenvectors associated with the
positive eigenvalues

𝐴T𝐴𝑣𝑗 = 𝜎2
𝑗𝑣𝑗 , 𝑗 = 1, 2,… , 𝑟 . (10.31)

Let 𝑣𝑟+1,… , 𝑣𝑘 be the eigenvectors corresponding to the zero-valued eigen-
values. These satisfy

𝐴T𝐴𝑣𝑗 = 0𝑘 , 𝑗 = 𝑟 + 1,… , 𝑘 . (10.32)

The set of eigenvectors 𝑣𝑗, 𝑗 = 1, 2,… , 𝑘 are mutually orthonormal. We
note that (10.31) implies

‖𝐴𝑣𝑗‖2 = (𝐴𝑣𝑗)T(𝐴𝑣𝑗) = 𝑣T
𝑗 𝐴T𝐴𝑣𝑗 = 𝜎2

𝑗𝑣T
𝑗 𝑣𝑗 = 𝜎2

𝑗 (10.33)

for 𝑗 = 1, 2,… , 𝑟 whereas (10.32) implies

‖𝐴𝑣𝑗‖2 = (𝐴𝑣𝑗)T(𝐴𝑣𝑗) = 𝑣T
𝑗 𝐴T𝐴𝑣𝑗 = 0 or 𝐴𝑣𝑗 = 0 (10.34)

for 𝑗 = 𝑟 + 1,… , 𝑘. The set of all vectors 𝑣 such that 𝐴𝑣 = 0 forms
the dimension 𝑘 − 𝑟 null space of 𝐴, and {𝑣𝑟+1,… , 𝑣𝑘} are a set of 𝑘 −
𝑟 orthonormal vectors satisfying (10.34). Therefore, {𝑣𝑟+1,… , 𝑣𝑘} forms
an orthonormal basis for 𝑁(𝐴, 𝑘 − 𝑟). It follows from the Fundamental
Theorem of Linear Algebra that {𝑣1,… , 𝑣𝑟} forms an orthonormal bases
for 𝐶(𝐴T).

The 𝑛×𝑛 matrix 𝐴𝐴T is also symmetric, positive semidefinite and rank
𝑟 so it too has 𝑟 positive eigenvalues, plus 𝑛 − 𝑟 zero-valued eigenvalues.
For 𝑗 = 1, 2,… , 𝑟, (10.31) implies

𝐴𝐴T𝐴𝑣𝑗 = 𝜎2
𝑗𝐴𝑣𝑗 . (10.35)

Dividing throughout by 𝜎𝑖, we can write

𝐴𝐴T (𝐴𝑣𝑗
𝜎𝑗

) = 𝜎2
𝑗 (

𝐴𝑣𝑗
𝜎𝑗

) , 𝑗 = 1, 2,… , 𝑟 , (10.36)

which we can write as

𝐴𝐴T𝑢𝑗 = 𝜎2
𝑗𝑢𝑗 where 𝑢𝑗 =

𝐴𝑣𝑗
𝜎𝑗

, 𝑗 = 1, 2,… , 𝑟 . (10.37)
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This says that 𝜎𝑗 are also the non-zero eigenvalues of 𝐴𝐴T, and 𝑢𝑗 as defined
in (10.37) are orthonormal eigenvectors associated with these eigenvalues.
The 𝑢𝑗 vectors, 𝑗 = 1, 2,… , 𝑟, are unit vectors by definition, and they are
orthogonal because

𝑢T
𝑗 𝑢ℎ = 1

𝜎𝑗

1
𝜎ℎ

𝑣T
𝑗 𝐴T𝐴𝑣ℎ = 1

𝜎𝑗

1
𝜎ℎ

𝑣T
𝑗 (𝐴T𝐴𝑣ℎ) =

1
𝜎𝑗

1
𝜎ℎ

𝑣T
𝑗 (𝜎2

ℎ𝑣ℎ) = 0

for all 𝑗 ≠ ℎ, 𝑗, ℎ = 1, 2,… , 𝑟. The remaining eigenvalues of 𝐴𝐴T are zero,
and the associated set of eigenvectors comprises vectors 𝑢 such that

𝐴𝐴T𝑢 = 0 .

This implies 𝑢T𝐴𝐴T𝑢 = (𝐴T𝑢)T(𝐴T𝑢) = 0, or 𝐴T𝑢 = 0. These eigenvec-
tors form the null space 𝑁(𝐴T, 𝑛−𝑟), and we can select 𝑛−𝑘 orthonormal
eigenvectors {𝑢𝑟+1,… , 𝑢𝑛} from this space. These form an orthonormal
basis for 𝑁(𝐴T, 𝑛 − 𝑟), and are all orthogonal to {𝑢1,… , 𝑢𝑟}, which form
an orthonormal basis for 𝐶(𝐴, 𝑟).

Finally, from the definition of 𝑢𝑗 in (10.37), we have

𝐴𝑣𝑗 = 𝜎𝑗𝑢𝑗 , 𝑗 = 1, 2,… , 𝑟 (10.38)

which we can write in matrix form as

𝐴𝑉1 = 𝐴 [𝑣1 … 𝑣𝑟] = [𝑢1 … 𝑢𝑟]
⎡
⎢⎢
⎣

𝜎1 0 … 0
0 𝜎2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜎𝑟

⎤
⎥⎥
⎦

= 𝑈1Σ𝑟 .

(10.39)

Since 𝐴𝑣𝑗 = 0 for 𝑗 = 𝑟 + 1,… , 𝑘, we can extend (10.39) to

𝐴
𝑛×𝑘

𝑉
𝑘×𝑘

= 𝐴 [𝑉1 𝑉2]

= [𝑈1 𝑈2] [
Σ𝑟 0𝑟×(𝑘−𝑟)

0(𝑛−𝑟)×𝑟 0(𝑛−𝑟)×(𝑘−𝑟)
] = 𝑈

𝑛×𝑛
Σ

𝑛×𝑘

where 𝑉2 = [𝑣𝑟+1 … 𝑣𝑘] and 𝑈2 = [𝑢𝑟+1 … 𝑢𝑛].
All this gives the singular value decomposition for a 𝑛 × 𝑘 matrix 𝐴:

Theorem 10.1 (Singular Value Decomposition) All 𝑛×𝑘 matrices of rank
𝑟 ≤ min{𝑛, 𝑘} can be written as

𝐴 = 𝑈Σ𝑉 T (10.40)

where
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(i) the 𝑛 × 𝑘 matrix Σ is “diagonal” with non-zero elements (Σ)𝑗𝑗 = 𝜎𝑗,
𝑗 = 1, 2,… , 𝑟, and 0 everywhere else. The 𝜎𝑗 are the square roots of the
𝑟 (common) positive eigenvalues of the 𝐴T𝐴 and 𝐴𝐴T and are called the
singular values of 𝐴. We usually label the singular values such that
𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟.
(ii) The columns of the 𝑛×𝑛 matrix 𝑈 are the orthonormal eigenvectors of
𝐴𝐴T. The first 𝑟 columns are the eigenvectors corresponding to the singular
values, and form an orthonormal basis for 𝐶(𝐴, 𝑟). The remaining 𝑛 − 𝑟
columns are the eigenvectors corresponding to the zero eigenvectors of 𝐴𝐴T

and form an orthonormal basis for 𝑁(𝐴T, 𝑛 − 𝑟).
(iii) The columns of the 𝑘×𝑘 matrix 𝑉 are the orthonormal eigenvectors of
𝐴T𝐴. The first 𝑟 columns are the eigenvectors corresponding to the singular
values, and form an orthonormal basis for 𝐶(𝐴T, 𝑟). The remaining 𝑘 − 𝑟
columns are the eigenvectors corresponding to the zero eigenvectors of 𝐴T𝐴
and form an orthonormal basis for 𝑁(𝐴, 𝑘 − 𝑟).

If 𝐴 is a 𝑛×𝑘 data matrix containing 𝑛 centered observations of 𝑘 vari-
ables, then 1

𝑛−1𝐴T𝐴 is the sample variance matrix containing the sample
variances of, and sample covariances between the 𝑘 variable across observa-
tional units, whereas 1

𝑘−1𝐴𝐴T contains the sample variances of, and sample
covariance between each of the observational units across variables. The
singular value decomposition provides all the relevant information for prin-
cipal component analysis of both 𝐴 and 𝐴T. We have

𝐴T𝐴 = 𝑉 ΣT𝑈T𝑈Σ𝑉 T = 𝑉 ΣTΣ𝑉 T . (10.41)

The matrix ΣTΣ is 𝑘 × 𝑘 diagonal with 𝜎2
𝑗 down the first 𝑟 diagonal terms.

(10.41) is the eigendecomposition of 𝐴T𝐴. The columns of 𝑉 can be used
to construct principal components of 𝐴. Also

𝐴𝐴T = 𝑈Σ𝑉 T𝑉 ΣT𝑈T = 𝑈ΣΣT𝑈T . (10.42)

The matrix ΣTΣ is 𝑛×𝑛 diagonal with 𝜎2
𝑗 down the first 𝑟 diagonal terms.

This is the eigendecomposition of 𝐴𝐴T. The columns of 𝑈 can be used to
construct principal components of 𝐴T.
Example 10.17 Completion of death-by-causes data matrix
Example 10.18 The singular value decomposition can also be written as

𝐴 = [𝑢1 𝑢2 … 𝑢𝑛]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎1 0 … 0 0 … 0
0 𝜎2 … 0 0 … 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 … 𝜎𝑟 0 … 0
0 0 … 0 0 … 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 … 0 0 … 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢⎢
⎣

𝑣T
1

𝑣T
2
⋮
𝑣T
𝑘

⎤
⎥⎥
⎦
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we get

𝐴 =
𝑟

∑
𝑗=1

𝜎𝑗𝑢𝑗𝑣T
𝑗 . (10.43)

This can be used to obtain “approximations” of large data matrices. For
instance, consider a full column rank 𝑛×𝑘 matrix 𝐴 may contain pixel data
for an image. This can be written as 𝐴 = ∑𝑘

𝑗=1 𝜎𝑗𝑢𝑗𝑣T
𝑗 . If we do not need

a very high resolution image, we can “compress” the image with the image
matrix 𝐴 = ∑𝑟

𝑗=1 𝜎𝑗𝑢𝑗𝑣T
𝑗 where 𝑟 might be considerably smaller than 𝑘.

This reduces the number of data points from 𝑛𝑘 to 𝑟(𝑛 + 𝑘). In Fig xx we
show an image at various levels of compression.

10.3.6 Exercises
Ex. 10.8 The matrix

𝐴 = [
1√
2 − 1√

2
1√
2

1√
2
]

is a “rotation matrix” which rotates every 𝑥 ∈ ℝ2 anticlockwise by an angle of
𝜋/4 or 45o. Find its eigenvalues and the corresponding eigenvectors. Find its
eigendecomposition.

Ex. 10.9 Show that the matrix 𝐴 = [0 1
0 0] is non-diagonalizable.

Ex. 10.10 Prove the statements in Section 10.3.3.7.
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10.5 Solutions to Exercises
Ex. 10.1: We have

𝐴T𝐴 = [ cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃] [

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ]

= [ cos2 𝜃 + sin2 𝜃 − cos 𝜃 sin 𝜃 + sin 𝜃 cos 𝜃
− sin 𝜃 cos 𝜃 + cos 𝜃 sin 𝜃 sin2 𝜃 + cos2 𝜃 ] = [1 0

0 1] .

If
𝑦 = 𝐴𝑥 = [cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃 ] [𝑥1
𝑥2

] = [𝑥1 cos 𝜃 − 𝑥2 sin 𝜃
𝑥1 sin 𝜃 + 𝑥2 cos 𝜃]

then
‖𝑦‖2 = (𝑥1 cos 𝜃 − 𝑥2 sin 𝜃)2 + (𝑥1 sin 𝜃 + 𝑥2 cos 𝜃)2

= (𝑥2
1 + 𝑥2

2)(sin2 𝜃 + cos2 𝜃) = (𝑥2
1 + 𝑥2

2) = ‖𝑥‖2 .
Furthermore,

𝑥 ⋅ 𝑦 = 𝑥2
1 cos 𝜃 − 𝑥1𝑥2 sin 𝜃 + 𝑥1𝑥2 sin 𝜃 + 𝑥2

2 cos 𝜃
= (𝑥2

1 + 𝑥2
2) cos 𝜃 = ‖𝑥‖2 cos 𝜃 = ‖𝑥‖‖𝑦‖ cos 𝜃 .

This says that the angle between 𝑥 and 𝑦 is 𝜃.
Ex. 10.2: We use the notation ∑𝑖 for ∑𝑛

𝑖=1. From

̂𝛽 = [
̂𝛽0
̂𝛽1
] = (𝑋T𝑋)−1𝑋T𝑦 = [ 𝑛 ∑𝑖 𝑥𝑖

∑𝑖 𝑥𝑖 ∑𝑖 𝑥2
𝑖
]
−1

[ ∑𝑖 𝑦𝑖
∑𝑖 𝑥𝑖𝑦𝑖

]

we have ̂𝛽0 = ∑𝑖 𝑥2
𝑖 ∑𝑖 𝑦𝑖 −∑𝑥𝑖 ∑𝑥𝑖𝑦𝑖
𝑛∑𝑖 𝑥2

𝑖 − (∑𝑖 𝑥𝑖)2
and ̂𝛽1 = 𝑛∑𝑖 𝑥𝑖𝑦𝑖 −∑𝑥𝑖 ∑𝑦𝑖

𝑛∑𝑖 𝑥2
𝑖 − (∑𝑖 𝑥𝑖)2

.

Using the fact the ∑𝑖(𝑥𝑖−𝑥)(𝑦𝑖−𝑦) = ∑𝑖 𝑥𝑖𝑦𝑖−𝑥𝑦, we get with some algebra

that ̂𝛽1 = ∑𝑖(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)
∑𝑖(𝑥𝑖 − 𝑥)2 . Then using this expression for ̂𝛽1, show that 𝑦− ̂𝛽1𝑥

works out to the expression for ̂𝛽0 shown above.
Ex. 10.3: Projecting ̂𝑦 = 𝑋(𝑋T𝑋)−1𝑋T𝑦 onto the column space of 𝑋 gives

𝑋(𝑋T𝑋)−1𝑋T ̂𝑦 = 𝑋(𝑋T𝑋)−1𝑋T [𝑋(𝑋T𝑋)−1𝑋T𝑦]
= 𝑋(𝑋T𝑋)−1𝑋T𝑦 = ̂𝑦

Since ̂𝑦 is already in the column space of 𝑋, projecting it again onto the column
space of 𝑋 just returns ̂𝑦.
Ex. 10.4: (a) The orthogonal projection of 𝑦 onto 𝑥 is

̂𝑦 = 𝑥(𝑥T𝑥)−1𝑥T ̂𝑦 .

Since 𝑥T𝑥 and 𝑥T ̂𝑦 her are, we can write the above as ̂𝑦 = 𝑥T𝑦
𝑥T𝑥𝑥. The orthogonal

̂𝑒 can be found by ̂𝑒 = 𝑦 − ̂𝑦 = 𝑦 − 𝑥T𝑦
𝑥T𝑥𝑥.
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(b) If 𝑥 = 𝑖𝑛, then the orthogonal projection becomes

̂𝑦 = 𝑖T𝑛 𝑦
𝑖T𝑛 𝑖𝑛

𝑖𝑛 = ∑𝑖 𝑦𝑖
𝑛 𝑖𝑛 = 𝑦 𝑖𝑛 =

⎡
⎢⎢
⎣

𝑦
𝑦
⋮
𝑦

⎤
⎥⎥
⎦

.

Ex. 10.5: If the columns of 𝑋 are orthogonal, then 𝑋T𝑋 is the diagonal matrix
diag (𝑥1 ⋅ 𝑥1 , 𝑥2 ⋅ 𝑥2 , … , 𝑥𝑘 ⋅ 𝑥𝑘) where 𝑥𝑖 is the 𝑖th column of 𝑋, 𝑖 = 1, 2, ..., 𝑘.
The formula for ̂𝑦 becomes

̂𝑦 = 𝑋 ̂𝛽 = 𝑋(𝑋T𝑋)−1𝑋T𝑦

= [𝑥1 𝑥2 … 𝑥𝑘]
⎡
⎢⎢
⎣

𝑥1 ⋅ 𝑥1 0 … 0
0 𝑥2 ⋅ 𝑥2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑥𝑘 ⋅ 𝑥𝑘

⎤
⎥⎥
⎦

−1

⎡
⎢⎢
⎣

𝑥T
1

𝑥T
2
⋮

𝑥T
𝑘

⎤
⎥⎥
⎦
𝑦

= 𝑥1
𝑥1 ⋅ 𝑦
𝑥1 ⋅ 𝑥1

+ 𝑥2
𝑥2 ⋅ 𝑦
𝑥2 ⋅ 𝑥2

+⋯+ 𝑥𝑘
𝑥𝑘 ⋅ 𝑦
𝑥𝑘 ⋅ 𝑥𝑘

.

If 𝑋 is orthogonal, then 𝑋T𝑋 = 𝐼. Then ̂𝛽 = 𝑋T𝑦, and the orthogonal projection
is simply ̂𝑦 = 𝑋𝑋T𝑦.
Ex. 10.6: (a) We have (symmetry)

𝐻T = 𝐼T
𝑛 − 2

‖𝑣‖2 (𝑣
T)T𝑣T = 𝐼𝑛 − 2

‖𝑣‖2 𝑣𝑣
T = 𝐻 .

and (orthogonality)

𝐻T𝐻 = 𝐻𝐻 = (𝐼𝑛 − 2
‖𝑣‖2 𝑣𝑣

T)(𝐼𝑛 − 2
‖𝑣‖2 𝑣𝑣

T)

= 𝐼𝑛𝐼𝑛 − 4
‖𝑣‖2 𝑣𝑣

T + 4
‖𝑣‖4 𝑣(𝑣

T𝑣)𝑣T

= 𝐼𝑛 − 4
‖𝑣‖2 𝑣𝑣

T + 4‖𝑣‖2
‖𝑣‖4 𝑣𝑣T = 𝐼𝑛.

(b) Similarly,

𝐻T = [ 𝐼T
𝑝 0𝑝×(𝑛−𝑝)

0(𝑛−𝑝)×𝑝 𝐻T
𝑛−𝑝

] = [ 𝐼𝑝 0𝑝×(𝑛−𝑝)
0(𝑛−𝑝)×𝑝 𝐻𝑛−𝑝

] = 𝐻 .

𝐻T𝐻 = 𝐻𝐻 = [ 𝐼𝑝 0𝑝×(𝑛−𝑝)
0(𝑛−𝑝)×𝑝 𝐻𝑛−𝑝

] [ 𝐼𝑝 0𝑝×(𝑛−𝑝)
0(𝑛−𝑝)×𝑝 𝐻𝑛−𝑝

]

= [ 𝐼𝑝 0𝑝×(𝑛−𝑝)
0(𝑛−𝑝)×𝑝 𝐻𝑛−𝑝𝐻𝑛−𝑝

] = [ 𝐼𝑝 0𝑝×(𝑛−𝑝)
0(𝑛−𝑝)×𝑝 𝐼𝑛−𝑝

] .

Ex. 10.7: (a) Show that 𝑎𝑖 ⋅ 𝑎𝑗 ≠ 0 where 𝑎𝑖 and 𝑎𝑗 are different columns of 𝐴, by
direct multiplication. (b) Show 𝑄T𝑄 = 𝐼 by direct multiplication.



August 31, 2024 18:18 book-9x6 Baydur-Preve-Tay index page 425

Projections and Matrix Factorizations 425

Ex. 10.8: The eigenvalue equation is

det(𝐴 − 𝜆𝐼2) = det[
1√
2 − 𝜆 − 1√

2
1√
2

1√
2 − 𝜆] = 𝜆2 −

√
2𝜆 + 1 = 0

which you can solve for the eigenvalues 𝜆1 = 1√
2 + 𝑖√

2 and 𝜆2 = 1√
2 − 𝑖√

2 .
Remark: Note that the eigenvalues are complex conjugates. Furthermore, it

is not surprising that there are no real eigenvalues, since every real vector gets
rotated by 𝜋/4, so no real vectors stay in the same or opposite direction when
premultiplied by 𝐴.

The eigenvalues associated with 𝜆1 are the complex-valued vectors 𝑥1 such
that

(𝐴 − 𝜆1)𝑥1 = [−
𝑖√
2 − 1√

2
1√
2 − 𝑖√

2
][𝑥11

𝑥12
] = [00]

These vectors satisfy −𝑖𝑥11 = 𝑥12 and 𝑥11 = 𝑖𝑥12. Both of these equations say the
same thing since 1/𝑖 = −𝑖. Letting 𝑥11 = 𝑠 we get

𝑥1 = [ 𝑠
−𝑖 𝑠] , 𝑠 ∈ ℂ .

For 𝜆2 = 1√
2 − 𝑖√

2 , we have

(𝐴 − 𝜆2)𝑥2 = [
𝑖√
2 − 1√

2
1√
2

𝑖√
2
][𝑥21

𝑥22
] = [00]

These vectors satisfy 𝑖𝑥21 = 𝑥22 and 𝑥21 = −𝑖𝑥22. Again, both of these equations
say the same thing. Letting 𝑥21 = 𝑠 we get

𝑥2 = [ 𝑠
𝑖 𝑠] , 𝑠 ∈ ℂ .

(Note: Statistical libraries will report a normalized version of 𝑥1 and 𝑥2. For
instance, they might set 𝑠 = 1√

2 .) The eigendecomposition is

[
1√
2 − 1√

2
1√
2

1√
2
]

⏟⏟⏟⏟⏟
𝐴

= [ 𝑠 𝑠
−𝑖 𝑠 𝑖 𝑠]⏟⏟⏟⏟⏟

𝑆

[
1√
2 + 𝑖√

2 0
0 1√

2 − 𝑖√
2
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Λ

[𝑖 𝑠 −𝑠
𝑖 𝑠 𝑠 ] 1

2𝑖𝑠2⏟⏟⏟⏟⏟⏟⏟
𝑆−1

.

Ex. 10.9: The eigenvalues of 𝐴 = [0 1
0 0] solve the equation det𝜆𝐼𝑛 −𝐴 = 𝜆2 = 0

so both eigenvalues are zero (alternatively, just note that 𝐴 is upper triangular
with zeros along its diagonal). The eigenvectors are therefore simply the null space
of 𝐴, i.e., vectors 𝑥 = [𝑥11 𝑥21]

T such that 𝐴𝑥 = 0, which are all vectors of the
form 𝑥 = [𝑠 0]T. This is a 1-dimensional subspace. The geometric multiplicity
of the eigenvalue 0 is 1 which is less than its algebraic multiplicity. Therefore 𝐴
is non-diagonalizable.
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Ex. 10.10: (a) 𝐴 and 𝐴T share the same characteristic polynomial, since det(𝜆𝐼𝑛−
𝐴) = det((𝜆𝐼𝑛 − 𝐴)T) = det(𝜆𝐼𝑛 − 𝐴T). Therefore 𝐴 and 𝐴T share the same
characteris. They do not necessarily share the same eigenvectors!
(b) If 𝐴𝑥 = 𝜆𝑥 and 𝐴 is non-singular, then 𝐴−1𝐴𝑥 = 𝐴−1(𝜆𝑥), so 𝑥 = 𝜆𝐴−1𝑥.
This implies 𝐴−1𝑥 = (1/𝜆)𝑥, which shows that the eigenvalues of 𝐴−1 are the
reciprocals of the eigenvalues of 𝐴.
(c) If 𝐴 is idempotent (𝐴𝐴 = 𝐴), then 𝐴𝑥 = 𝜆𝑥 implies 𝐴𝐴𝑥 = 𝐴(𝜆𝑥) = 𝜆𝐴𝑥 =
𝜆2𝑥, therefore we have 𝜆2 = 𝜆 which implies 𝜆 is zero or one.
(d) If 𝐴 is idempotent, it only has unit and zero eigenvalues. Suppose there are 𝑠
unit eigenvectors, and 𝑛−𝑠 zero eigenvectors. Suppose 𝐴 has rank 𝑟. Consider the
eigenvalue 𝜆 = 1. The corresponding eigenspace is the space of all vectors 𝑥 such
that (𝐼𝑛−𝐴)𝑥 = 0𝑛. This is exactly the column space of 𝐴, 𝐶(𝐴, 𝑟): If 𝑥 ∈ 𝐶(𝐴, 𝑟),
i.e., 𝑥 = 𝐴𝑦 for some 𝑦 ∈ ℝ𝑛, then (𝐼𝑛 − 𝐴)𝐴𝑦 = 𝐴𝑦 − 𝐴2𝑦 = 𝐴𝑦 − 𝐴𝑦 = 0𝑛. If
(𝐼𝑛 − 𝐴)𝑥 = 0𝑛, then 𝐴𝑥 = 𝑥 which says that 𝑥 ∈ 𝐶(𝐴, 𝑟). Since geometric
multiplicity of eigenvalues cannot exceed algebraic multiplicity, we have 𝑟 ≤ 𝑠.
Consider the eigenvalue 𝜆 = 0. The corresponding eigenspace is the space of all
vectors 𝑥 such that 𝐴𝑥 = 0. This is the null space of 𝐴, 𝑁(𝐴, 𝑛 − 𝑟), which has
dimension 𝑛 − 𝑟. Again, we have 𝑛 − 𝑟 ≤ 𝑛 − 𝑠, which implies 𝑟 ≥ 𝑠.

Therefore 𝑟 = 𝑠, and the geometric multiplicities of eigenvalues 1 and 0 are
equal to their respective algebraic multiplicities, so the matrix is diagonalizable.
(e) The sum of eigenvalues of a matrix is equal to its trace, which for idempotent
matrices is equal to the number of unit eigenvalues, which from part (d) is equal
to its rank.




