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Session 11-12

Session 11-12: Intro to Time Series and Time Series Regressions

Characteristics of Economic Time Series Data
Trends, Seasonality and Cycles

Intertemporal Correlations

Statistical Models and Tools for Describing Such Features
Covariance-Stationarity and Weak-Dependence
Regressions with Covariance-Stationary Weakly-Dependent Time Series
Regressions with Trending and Persistent Series
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R Code and Data

We will use the following packages
library(fpp3) # a suite of packages for forecasting, and includes tidyverse
library(patchwork) # for plotting
library(ggfortify) # for plotting
library(readxl) # used to read in excel files
library(mFilter) # require for HP filter
library(seasonal) # required for seasonal adjustment
library(stargazer) # For nice regression output

Time series can be stored in several ways in R
We will store our time series in “tsibbles” (a kind of data frame)
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R Code and Data
ts01 <- read_excel("data\\ts_01.xlsx") %>% # data in columns, include dates in DATE
mutate(DATE=yearmonth(DATE)) %>% # required for conversion to tsibble
as_tsibble(index=DATE) %>% # conversion to tsibble
mutate(POULTRY_US = POULTRY_US/100000) # convert POULTRY_US from thousands to 100 million

head(ts01,3)

# A tsibble: 3 x 7 [1M]
DATE ELEC_GEN_SG TOUR_SG IP_SG CPI_US DOMEX5_SG POULTRY_US
<mth> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1983 Jan 667. 232164 14.3 97.8 NA 3.40
2 1983 Feb 587. 212591 11.4 97.9 NA 3.14
3 1983 Mar 727. 242272 14.5 97.9 NA 3.68
tail(ts01,3)

# A tsibble: 3 x 7 [1M]
DATE ELEC_GEN_SG TOUR_SG IP_SG CPI_US DOMEX5_SG POULTRY_US
<mth> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 2017 Oct 4504. 1402299 118. 247. 3565. 7.83
2 2017 Nov 4283. 1397330 115. 247. 3582. 7.28
3 2017 Dec 4376. 1569616 120. 247. 3682. 7.04
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R Code and Data

We will need the following new variables
t: sequence of integers
tsq: sequence of squares
d01, d02, …, d11, d12: “monthly seasonal dummies”

d01 = 1 for January data, 0 otherwise

d02 = 1 for February data, 0 otherwise

etc.
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R Code and Data
ts01 <- ts01 %>% mutate(t=row_number(), tsq = t^2,

d01=ifelse(month(DATE)==1,1,0),
d02=ifelse(month(DATE)==2,1,0),
d03=ifelse(month(DATE)==3,1,0),
d04=ifelse(month(DATE)==4,1,0),
d05=ifelse(month(DATE)==5,1,0),
d06=ifelse(month(DATE)==6,1,0),
d07=ifelse(month(DATE)==7,1,0),
d08=ifelse(month(DATE)==8,1,0),
d09=ifelse(month(DATE)==9,1,0),
d10=ifelse(month(DATE)==10,1,0),
d11=ifelse(month(DATE)==11,1,0),
d12=ifelse(month(DATE)==12,1,0))

# The following string and vector will also be useful for us
seas <- "d02 + d03 + d04 + d05 + d06 + d07 + d08 + d09 + d10 + d11 + d12"
seaslist <- c("d01", "d02", "d03", "d04", "d05", "d06", "d07", "d08", "d09", "d10", "d11", "d12")
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R Code and Data
options(width=400)
ts01 %>% select(DATE,t, tsq, seaslist) %>% filter_index(.~"1984M3")

# A tsibble: 15 x 15 [1M]
DATE t tsq d01 d02 d03 d04 d05 d06 d07 d08 d09 d10 d11 d12
<mth> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1983 Jan 1 1 1 0 0 0 0 0 0 0 0 0 0 0
2 1983 Feb 2 4 0 1 0 0 0 0 0 0 0 0 0 0
3 1983 Mar 3 9 0 0 1 0 0 0 0 0 0 0 0 0
4 1983 Apr 4 16 0 0 0 1 0 0 0 0 0 0 0 0
5 1983 May 5 25 0 0 0 0 1 0 0 0 0 0 0 0
6 1983 Jun 6 36 0 0 0 0 0 1 0 0 0 0 0 0
7 1983 Jul 7 49 0 0 0 0 0 0 1 0 0 0 0 0
8 1983 Aug 8 64 0 0 0 0 0 0 0 1 0 0 0 0
9 1983 Sep 9 81 0 0 0 0 0 0 0 0 1 0 0 0
10 1983 Oct 10 100 0 0 0 0 0 0 0 0 0 1 0 0
11 1983 Nov 11 121 0 0 0 0 0 0 0 0 0 0 1 0
12 1983 Dec 12 144 0 0 0 0 0 0 0 0 0 0 0 1
13 1984 Jan 13 169 1 0 0 0 0 0 0 0 0 0 0 0
14 1984 Feb 14 196 0 1 0 0 0 0 0 0 0 0 0 0
15 1984 Mar 15 225 0 0 1 0 0 0 0 0 0 0 0 0
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Characteristics of Economic Time Series
p1 <- ts01 %>% autoplot(IP_SG) + theme_minimal() + xlab("") + theme(text=element_text(size=8))
p2 <- ts01 %>% filter_index("1990M1" ~ "1995M12") %>%

autoplot(IP_SG) + theme_minimal() + xlab("") + theme(text=element_text(size=8))
p1 | p2
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Elementary Tools

Discuss some elementary tools for describing these characteristics
Transformations
Elementary Models for

Trends

Seasonality

Cycles

(Population and Sample) Autocovariance and Autocorrelation Function
Develop vocabulary for describing time series features
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A Common Data Transformation
We often work with log 𝑌𝑡 instead of 𝑌𝑡
p3 <- ts01 %>% autoplot(IP_SG) + theme_minimal() + xlab("") + theme(text=element_text(size=8))
p4 <- ts01 %>% autoplot(log(IP_SG)) + theme_minimal() + xlab("") + theme(text=element_text(size=8))
p3 | p4
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Stabilizes increasing variance, log 𝑌𝑡 − log 𝑌𝑡−1 interpretation as growth rate

Anthony Tay ECON207 Session 11-12 This Version: 30 Sep 2024 10 / 88



Agenda Characteristics of Economic Time Series A Little TS Theory Time Series Regressions Regression with Trends Roadmap

Ways to Describe Trend / Deterministic Trend
We often want to

classify trend: “deterministic” or “stochastic”
estimate trend (perhaps to remove it, i.e., to detrend data)

Deterministic Trend Models

𝑌𝑡 = 𝑓(𝑡) + 𝜖𝑡 , 𝑡 = 1, 2, 3, ...

Deterministic Linear Trend: 𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜖𝑡 , 𝑡 = 1, 2, …
Deterministic Quadratic Trend: 𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2 + 𝜖𝑡 , 𝑡 = 1, 2, …
Many other possibilities
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Deterministic Trend
theme1 <- theme_minimal() +
theme(axis.title=element_text(size=8),

axis.text=element_text(size=6))
mdl_dqt <- lm(log(IP_SG) ~ t + tsq, data=ts01)
df_plt <- ts01 %>%
mutate("Fitted"=fitted(mdl_dqt),

"Residuals"=residuals(mdl_dqt))
p1 <- autoplot(df_plt, log(IP_SG), size=0.5, color='grey') +
autolayer(df_plt, Fitted, size=0.6) + theme1 + xlab("")

p2 <- autoplot(df_plt, Residuals) +
theme1 + xlab("")

mdl_dqt %>% summary() %>% coef() %>% round(6)
cat("R-sqr: ", summary(mdl_dqt)$r.squared)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.519434 0.015296 164.70896 0
t 0.007774 0.000168 46.33197 0
tsq -0.000006 0.000000 -15.11436 0
R-sqr: 0.9751655
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Deterministic Trend (Nonparametric Approach)

A Nonparametric Approach (HP Filter)

̂𝜏ℎ𝑝
𝑡 = argmin ̂𝜏𝑡

(
𝑇

∑
𝑡=1

(𝑦𝑡 − ̂𝜏𝑡)2 + 𝜆
𝑇 −1
∑
𝑡=2

[( ̂𝜏𝑡+1 − ̂𝜏𝑡) − ( ̂𝜏𝑡 − ̂𝜏𝑡−1)]2)

ts03.ts <- as.ts(ts01)
lipsg <- hpfilter(log(ts03.ts[,'IP_SG']), type="lambda", freq=14400)
hp_dat <- as_tsibble(ts.union("hpcycle"=lipsg$cycle,

"hptrend"=lipsg$trend,
"log(IP_SG)"=log(ts03.ts[,'IP_SG'])),pivot_longer=F)

p1 <- autoplot(hp_dat, `log(IP_SG)`, color="grey") +
autolayer(hp_dat, hptrend, size=0.6) +
theme_minimal() + theme(legend.position = "bottom") + theme1 + xlab("")

p2 <- autoplot(hp_dat, hpcycle) + theme1 + xlab("")
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Deterministic Trend (Nonparametric Approach)

p1 | p2
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Deterministic Trend (Nonparametric Approach)
Moving Average: ̂𝜏𝑚𝑎

𝑡 = 1
2𝑘 + 1 ∑𝑘

𝑗=−𝑘 𝑌𝑡+𝑗, 𝑡 = 𝑘 + 1, ..., 𝑇 − 𝑘
ma_dat <- ts01 %>%
select(IP_SG) %>%
mutate("MA_IP_SG"=as.numeric(NA))

k <- 11
T <- dim(ma_dat)[1]
for (i in (k+1):(T-k)){
ma_dat[i,"MA_IP_SG"] <- mean(
log(ma_dat$IP_SG[(i-k):(k+i)]))

}

autoplot(ma_dat, log(IP_SG), color="darkgray") +
autolayer(ma_dat, MA_IP_SG, linewidth=0.6) +
theme1 + xlab("")
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Stochastic Trends
“Stochastic Trends”: Models 𝑌𝑡 as

𝑌𝑡 − 𝑌𝑡−1 = 𝛼 + 𝜖𝑡 i.e., 𝑌𝑡 = 𝛼 + 𝑌𝑡−1 + 𝜖𝑡 for all 𝑡
“Random Walk” (with drift if 𝛼 ≠ 0)
Essential difference between “stochastic trend” and “deterministic trend”

𝑌1 = 𝛼 + 𝑌0 + 𝜖1 var(𝑌1 ∣ 𝑌0) = 𝜎2

𝑌2 = 𝛼 + 𝑌1 + 𝜖2 = 𝑌0 + 2𝛼 + 𝜖1 + 𝜖2 var(𝑌2 ∣ 𝑌0) = 2𝜎2

𝑌3 = 𝛼 + 𝑌2 + 𝜖3 = 𝑌0 + 3𝛼 + 𝜖1 + 𝜖2 + 𝜖3 var(𝑌3 ∣ 𝑌0) = 3𝜎2

⋮ ⋮
𝑌𝑡 = 𝛼 + 𝑌𝑡−1 + 𝜖𝑡 = 𝑌0 + 𝛼𝑡 + 𝜖1 + 𝜖2 + 𝜖3 + ⋯ + 𝜖𝑡 var(𝑌𝑡 ∣ 𝑌0) = 𝑡𝜎2
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Stochastic Trends
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Stochastic Trends
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Stochastic Trends

To fit a random walk with drift, just estimate the mean of the first difference:
a0 <- mean(diff(log(ts01$IP_SG))) # Model is Y_{t} = a0 + Y_{t-1} + e_{t}

theme2 <- theme(axis.title = element_text(size=8), axis.text = element_text(size=6),
axis.text.x = element_text(size=6, angle=45, hjust=1))

df_plt2 <- ts01 %>% mutate(Fitted=lag(log(IP_SG))+a0, Residuals=log(IP_SG)-Fitted)
p1 <- autoplot(df_plt2, log(IP_SG), size=0.4, color="red") +

autolayer(df_plt2, Fitted, size=0.4) + theme1 + xlab("") + theme2
p2 <- autoplot(df_plt2, Residuals) + theme1 + xlab("") + theme2
df_plt2sub <- df_plt2 %>% filter_index("1990M1" ~ "1995M12")
p3 <- autoplot(df_plt2sub,log(IP_SG), color="red") + theme1 +

autolayer(df_plt2sub, Fitted, size=0.6) + theme2 + xlab("")
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Stochastic Trends
(p1 | p2 | p3) + plot_annotation(title="log(IP_SG) Random Walk with Drift, Fit and Residuals",
theme = theme(plot.title = element_text(size=10))) +
plot_layout(widths=c(1,1,1.8))
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Seasonality
Patterns with regular period, arising from ‘mechanical’ reasons
ts01 %>% gg_season(difference(log(IP_SG))) + theme1
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Modelling Seasonality with Seasonal Dummies

Three equivalent specifications

𝑌𝑡 = 𝛽1𝑑1,𝑡 + 𝛽2𝑑2,𝑡 + ⋯ + 𝛽12𝑑12,𝑡 + 𝜖𝑡

𝑌𝑡 = 𝛼0 + 𝛼2𝑑2,𝑡 + ⋯ + 𝛼12𝑑12,𝑡 + 𝜖𝑡

𝑌𝑡 = 𝛿0 + 𝛿2(𝑑2,𝑡 − 1
12) + 𝛿3(𝑑3,𝑡 − 1

12) + ⋯ + 𝛿12(𝑑12,𝑡 − 1
12) + 𝜖𝑡

Can use in combination with other regressors
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Modelling Seasonality with Seasonal Dummies
Seasonal Dummies with Quadratic Trend — log ELEC_GEN_SG

𝑌𝑡 = 𝛼0 + 𝛼2𝑑2,𝑡 + ⋯ + 𝛼12𝑑12,𝑡 + 𝛽1𝑡 + 𝛽2𝑡2 + 𝜖𝑡

mdl_dqt <- lm(as.formula(paste0("log(ELEC_GEN_SG) ~ t + tsq + ", seas)),
data=ts01)

df_plt1 <- ts01 %>% mutate("Fitted"=fitted(mdl_dqt),
"Residuals"=residuals(mdl_dqt))

p1 <- autoplot(df_plt1, log(ELEC_GEN_SG), linewidth=0.5, color="black") +
autolayer(df_plt1, Fitted, linewidth=0.3, color="cornflowerblue") +
theme1 + xlab("")

p2 <- autoplot(df_plt1, Residuals, linewidth=0.3, color="cornflowerblue") +
theme1 + xlab("")
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Modelling Seasonality with Seasonal Dummies
p1 | p2
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Modelling Seasonality with Seasonal Dummies

Seasonal dummy approach assumes “very regular” seasonal patterns — may or
may not be appropriate
Other methods (e.g., seasonal ARIMA) — not covered in this course
Seasonally Adjusted Data

Official Statistics Agencies often provide seasonally-adjusted data

Typical Method
Estimate “Trend-Cycle” nonparametrically (e.g., moving average methods)

Estimate Seasonal Component nonparametrically (e.g., “seasonal” m.a. methods)

Remove Seasonal Component from original series
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Seasonally-Adjusted Series

ipsg_dcmp <- ts01 %>%
model(

x11=X_13ARIMA_SEATS(
log(IP_SG) ~ x11()
)

) %>%
components()

p_decomp <- autoplot(ipsg_dcmp) +
theme1 +
labs(title="X-11 Decomp log(IP_SG)") +
xlab("") +
theme(text=element_text(size=14))
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Seasonally-Adjusted Series
p2 <- ipsg_dcmp %>% ggplot(aes(x = DATE)) + geom_line(aes(y = `log(IP_SG)`), color="grey", size=0.4) +
geom_line(aes(y = season_adjust), size=0.4) + theme_minimal() + theme2 + xlab("")

p3 <- ipsg_dcmp %>% filter_index("1990M1" ~"1995M12") %>%
ggplot(aes(x = DATE)) + geom_line(aes(y = `log(IP_SG)`), size=0.5, color="grey") +
geom_line(aes(y = season_adjust), size=0.5) + theme_minimal() + theme2 + xlab("")

(p2 | p3) + plot_annotation(title="log(IP_SG) s.a., n.s.a.", theme = theme(title = element_text(size=8)))
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Modelling Cycles
ts02 <- read_excel("data\\ts_02.xlsx") %>%

mutate(Period=yearquarter(Period), Y_1=lag(Y,1)) %>% as_tsibble(index=Period)
p1 <- ts02 %>% autoplot(Y) + theme1 + theme2 + theme(aspect.ratio = 0.7) + xlab("")
p2 <- ts02 %>% ggplot(aes(x=Y_1, y=Y)) + geom_point(size=0.6) + theme_minimal() + ylab("Y(t)") +

xlab("Y(t-1)") + theme(axis.title = element_text(size=8),
axis.text = element_text(size=6), aspect.ratio = 1)
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Modelling Cycles

Scatterplot suggests something like:

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝜖𝑡

may be suitable for modeling cycles
“Autoregression of Order 1” or “AR(1)” — Member of ARIMA class of models

ARIMA models covered in detail in other courses
We limit ourselves to AR(1) in this course
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Modelling Cycles

We have already seen an AR(1)
Random Walk: 𝑌𝑡 = 𝛽0 + 𝑌𝑡−1 + 𝜖𝑡, i.e., 𝛽1 = 1
Used to describe “stochastic trend”

For cycles, we use the “covariance-stationary AR(1)”
𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝜖𝑡, i.e., |𝛽1| < 1
We will explain the term “covariance-stationary” in a moment
We first cover a little bit of Time Series theory
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A Little TS Theory

Stochastic Processes
Autocovariance and Autocorrelation Functions (Population and Sample)
Covariance-Stationary Processes

Trend-Stationary Processes

Difference-Stationary Process

Weakly Dependent Series / Persistent Series
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Stochastic Processes
Throughout, think of the “population” as a “data generating process”,

e.g., think of economy as a “machine” that generates data on output, prices,
interest rates, etc. over time
more precisely, this “machine” generates sequences of random variables

𝑌1, 𝑌2, … , 𝑌𝑡, …
𝑋1, 𝑋2, … , 𝑋𝑡, …
etc.

we call such sequences of random variables as stochastic processes

Our time series data are realizations of these stochastic processes
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Stochastic Processes

A times series model is a stylized description of a stochastic process

Linear deterministic trend model: 𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜖𝑡, 𝜖 𝑖𝑖𝑑∼ (0, 𝜎2)

Random walk with drift: 𝑌𝑡 = 𝛽0 + 𝑌𝑡−1 + 𝜖𝑡, 𝜖 𝑖𝑖𝑑∼ (0, 𝜎2)
Important to understand how various stochastic processes behave:

unconditional means 𝐸(𝑌𝑡) and unconditional variances Var(𝑌𝑡)
conditional means 𝐸(𝑌𝑡 ∣ 𝑌𝑡−1, … ) and conditional variances Var(𝑌𝑡 ∣ 𝑌𝑡−1, … )
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Stochastic Processes

For stochastic processes, intertemporal correlations, i.e., “dynamics”, are important
autocovariance and autocorrelations, for each 𝑡 and for 𝑘 = 1, 2, …

𝛾𝑡,𝑘 = Cov(𝑌𝑡, 𝑌𝑡−𝑘)
= 𝐸((𝑌𝑡 − 𝐸(𝑌𝑡))(𝑌𝑡−𝑘 − 𝐸(𝑌𝑡−𝑘)))

𝜌𝑡,𝑘 = Cov(𝑌𝑡, 𝑌𝑡−𝑘)
√Var(𝑌𝑡)√Var(𝑌𝑡−𝑘)

We call these “autocovariance functions” and “autocorrelation functions”
The term “serial correlation” and “autocorrelation” are synonymous
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Stochastic Processes (White Noise)

Examples

White Noise: 𝜖𝑡 where for all 𝑡,
𝐸(𝜖𝑡) = 0
Var(𝜖𝑡) = 𝜎2

Cov(𝜖𝑡, 𝜖𝑠) = 0 for all 𝑡 ≠ 𝑠
If 𝜖𝑡 and 𝜖𝑠 are independent for all 𝑠 ≠ 𝑡, we call 𝜖𝑡 an “independent white noise”
process
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Covariance Stationary Processes

A Covariance Stationary process 𝑌𝑡 is one where
𝐸(𝑌𝑡) is the same finite constant for all 𝑡
Var(𝑌𝑡) is the same finite constant for all 𝑡
Cov(𝑌𝑡, 𝑌𝑡−𝑘) is, for any 𝑘, the same finite constant for all 𝑡

May be different for different 𝑘
but for any given 𝑘, same for all 𝑡, i.e.,

𝛾𝑡,𝑘 = Cov(𝑌𝑡, 𝑌𝑡−𝑘) = 𝐸((𝑌𝑡 − 𝐸(𝑌𝑡))(𝑌𝑡−𝑘 − 𝐸(𝑌𝑡−𝑘))) = 𝛾𝑘
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Covariance Stationary Processes
Since for covariance-stationary processes,

Cov(𝑌𝑡, 𝑌𝑡−𝑘) = 𝛾𝑘,𝑡 = 𝛾𝑘 and Var(𝑌𝑡) = 𝛾0,𝑡 = 𝛾0

we have
Autocorr(𝑌𝑡, 𝑌𝑡−𝑘) = 𝛾𝑘

𝛾0

Covariance-Stationary Processes are “stable” processes
Expect to see steady fluctuations around a constant value (no trend, no changes in
variance)
Autocorrelation patterns not changing over time (we elaborate on this soon)

Anthony Tay ECON207 Session 11-12 This Version: 30 Sep 2024 37 / 88



Agenda Characteristics of Economic Time Series A Little TS Theory Time Series Regressions Regression with Trends Roadmap

Covariance Stationary Processes
Example A white noise process is covariance stationary:

𝐸(𝑌𝑡) = 0, Var(𝑌𝑡) = 𝜎2, Cov(𝑌𝑡, 𝑌𝑠) = 0 for all 𝑡, 𝑠, 𝑡 ≠ 𝑠

Example A (pure) deterministic trend process is not covariance stationary, since

𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜖𝑡 , 𝜖𝑡 ∼ 𝑊𝑁(0, 𝜎2) ⟹ 𝐸(𝑌𝑡) = 𝛽0 + 𝛽1𝑡 depends on 𝑡

A deterministic trend process is said to be “trend-stationary”
A trend-stationary process is one that is:

𝑌𝑡 = 𝑓(𝑡) + cov. stat. process
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Covariance Stationary AR(1)
Example A covariance-stationary process is a covariance-stationary AR(1) if it
satisfies

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝜖𝑡 , |𝛽1| < 1 , 𝜖 ∼ 𝑊𝑁(0, 𝜎2)
Properties:

Mean: 𝐸(𝑌𝑡) = 𝛽0
1 − 𝛽1

Proof:
𝐸(𝑌𝑡) = 𝛽0 + 𝛽1𝐸(𝑌𝑡−1) + 𝐸(𝜖𝑡) ⇒ 𝐸(𝑌𝑡) = 𝛽0 + 𝛽1𝐸(𝑌𝑡) ⇒ 𝐸(𝑌𝑡) = 𝛽0

1 − 𝛽1
If 𝛽0 = 0, then 𝐸(𝑌𝑡) = 0
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Covariance-Stationary AR(1)

Variance: Var(𝑌𝑡) = 𝜎2

1 − 𝛽2
1

Autocovariance Fn.: 𝛾𝑘 = Cov(𝑌𝑡, 𝑌𝑡−𝑘) = 𝐸((𝑌𝑡 − 𝐸(𝑌𝑡))(𝑌𝑡−𝑘 − 𝐸(𝑌𝑡−𝑘)))

Cov(𝑌𝑡, 𝑌𝑡−1) = 𝜎2𝛽1
1 − 𝛽2

1
, Cov(𝑌𝑡, 𝑌𝑡−2) = 𝜎2𝛽2

1
1 − 𝛽2

1
, … , Cov(𝑌𝑡, 𝑌𝑡−𝑘) = 𝜎2𝛽𝑘

1
1 − 𝛽2

1

Autocorrelation Fn.: 𝜌1 = 𝛽1 , 𝜌2 = 𝛽2
1 , … , 𝜌𝑘 = 𝛽𝑘

1 , …
Since |𝛽1| < 1, ACF decays with 𝑘, 𝜌𝑘 → 0 as 𝑘 → ∞ (“Weak Dependence”)
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Covariance-Stationary AR(1)

X

lag(X)

X

lag(X) lag(X) lag(X) lag(X)

lag(X, 5)

X

lag(X, 5) lag(X, 5) lag(X, 5) lag(X, 5)
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Covariance-Stationary AR(1)
Measuring Intertemporal Correlations:
Sample Autocovariance Function:

̂𝛾𝑘 = 1
𝑇

𝑇
∑

𝑡=𝑘+1
(𝑌𝑡 − 𝑌 )(𝑌𝑡−𝑘 − 𝑌 ) , 𝑘 = 0, 1, 2, ...

̂𝛾0 is the sample variance (biased version)
Sample Autocorrelation Function:

̂𝜌𝑘 = ̂𝛾𝑘
̂𝛾0

, 𝑘 = 0, 1, 2, 3, ...
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Covariance-Stationary AR(1)
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Covariance-Stationary AR(1)
Conditional Mean: 𝐸(𝑌𝑡 ∣ 𝑌𝑡−1, ...) = 𝛽0 + 𝛽1𝑌𝑡−1

Conditional Variance: Var(𝑌𝑡 ∣ 𝑌𝑡−1, ...) = 𝜎2
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)
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AR(1) with structural break

Example AR(1) with Structural Break Suppose

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝜖𝑡 for all 𝑡 < 𝜏
𝑌𝑡 = 𝛽∗

0 + 𝛽∗
1𝑌𝑡−1 + 𝜖𝑡 for all 𝑡 ≥ 𝜏

where 𝛽0 ≠ 𝛽∗
0 or 𝛽1 ≠ 𝛽∗

1 (or both), though both 𝛽1 and 𝛽∗
1 are less than one in

absolute value
AR(1) with structural break

before and after break, process is covariance stationary
but when treated as a whole, process is not covariance-stationary
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Random Walk without Drift Again
Example Random Walk without Drift

𝑌𝑡 = 𝑌𝑡−1 + 𝜖𝑡 = 𝑌0 + 𝜖𝑡 + 𝜖𝑡−1 + ⋯ + 𝜖1 , 𝜖 ∼ 𝑊𝑁(0, 𝜎2)
Unconditional variance depends on how we treat 𝑌0

If we treat 𝑌0 as fixed (easiest), then Var(𝑌𝑡) = 𝑡𝜎2

As process evolves, i.e., as 𝑡 → ∞, the variance becomes infinity

Furthermore: 𝜌𝑡,𝑘 = Cor(𝑌𝑡, 𝑌𝑡−𝑘) = (𝑡 − 𝑘)𝜎2
√

𝑡𝜎2√(𝑡 − 𝑘)𝜎2 = √(𝑡 − 𝑘)
𝑡

As process evolves, i.e., as 𝑡 → ∞, we see that for any fixed 𝑘, 𝜌𝑡,𝑘 → 1
Not covariance-stationary, nor weakly dependent, but “highly persistent”
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Difference-Stationary Processes

Random Walk (with / without drift) are examples of “difference-stationary processes”

𝑌𝑡 = 𝛽0 + 𝑌𝑡−1 + 𝜖𝑡 , 𝜖 ∼ 𝑊𝑁(0, 𝜎2)

𝑌𝑡 not covariance-stationary
but Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 is stationary

For RW:
Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 = 𝛽0 + 𝜖𝑡 , 𝜖𝑡 ∼ 𝑊𝑁(0, 𝜎2)
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Summary

Trend
Deterministic Trend (including non-parametric) / Stochastic Trend
Both not covariance-stationary

Seasonality
Seasonal Dummy Model
Not covariance-stationary
It is possible to have (other kinds) of seasonal processes that are stationary

Cycles
We looked at covariance-stationary AR(1)
There are many other kinds of covariance-stationary processes
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Combining Elements

We often have to mix and match elements to describe time series data
e.g. linear trend with zero-mean AR(1) errors

𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜖𝑡 , 𝜖𝑡 = 𝜌𝜖𝑡−1 + 𝑢𝑡 , |𝜌| < 1 , 𝑢𝑡 ∼ 𝑊𝑁(0, 𝜎2
𝑢)

This is a trend-stationary process (which is not covariance-stationary)

𝑌𝑡 = 𝛽0 + 𝛽1𝑡⏟
deterministic trend

+ 𝜖𝑡⏟
stationary AR(1) ↗

𝜖𝑡 = 𝜌𝜖𝑡−1 + 𝑢𝑡 , |𝜌| < 1 , 𝑢𝑡 ∼ 𝑊𝑁(0, 𝜎2
𝑢)

Such a process contains deterministic trend and covariance-stationary cycles

Anthony Tay ECON207 Session 11-12 This Version: 30 Sep 2024 49 / 88



Agenda Characteristics of Economic Time Series A Little TS Theory Time Series Regressions Regression with Trends Roadmap

Combining Elements
We can estimate the following in a number of ways:

𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜖𝑡 , 𝜖𝑡 = 𝜌𝜖𝑡−1 + 𝑢𝑡 , |𝜌| < 1 , 𝑢𝑡 ∼ 𝑊𝑁(0, 𝜎2
𝑢)

Estimate by MLE, or note that

𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜖𝑡
𝜌𝑌𝑡−1 = 𝜌𝛽0 + 𝜌𝛽1(𝑡 − 1) + 𝜌𝜖𝑡−1

𝑌𝑡 − 𝜌𝑌𝑡−1 = 𝛽0 − 𝜌𝛽0 + 𝛽1𝑡 − 𝜌𝛽1(𝑡 − 1) + 𝜖𝑡 − 𝜌𝜖𝑡
𝑌𝑡 − 𝜌𝑌𝑡−1 = (𝛽0 − 𝜌𝛽0 + 𝜌𝛽1) + (1 − 𝜌)𝛽1𝑡 + 𝑢𝑡

𝑌𝑡 = 𝛽∗
0 + 𝛽∗

1𝑡 + 𝛽∗
2𝑌𝑡−1 + 𝑢𝑡

which can be estimated by OLS
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Example
df_ipsg <- ts01 %>%
select(c(IP_SG, t, tsq, seaslist)) %>%
mutate(IP_SG_1= lag(IP_SG,1)) %>%
drop_na()

formula <- paste0(
"log(IP_SG) ~ log(IP_SG_1) + t + tsq + ",
seas) %>% as.formula

mdl_ipsg <- lm(formula, data=df_ipsg)

mdl_ipsg %>% summary() %>% coefficients() %>%
round(4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8431 0.0987 8.5457 0.0000
log(IP_SG_1) 0.6390 0.0380 16.8206 0.0000
t 0.0028 0.0003 8.9616 0.0000
tsq 0.0000 0.0000 -6.4109 0.0000
d02 -0.0438 0.0169 -2.5876 0.0100
d03 0.2355 0.0180 13.0548 0.0000
d04 -0.0154 0.0167 -0.9241 0.3560
d05 0.0551 0.0169 3.2519 0.0012
d06 0.1024 0.0169 6.0405 0.0000
d07 0.0647 0.0167 3.8761 0.0001
d08 0.0806 0.0167 4.8168 0.0000
d09 0.1116 0.0167 6.6841 0.0000
d10 0.0641 0.0166 3.8532 0.0001
d11 0.0264 0.0167 1.5841 0.1139
d12 0.1350 0.0169 7.9961 0.0000
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Combining Elements
df_ipsg_plt <- df_ipsg %>% mutate("Fitted"=fitted(mdl_ipsg), "Residuals"=residuals(mdl_ipsg))
p1 <- autoplot(df_ipsg_plt, log(IP_SG), linewidth=0.5, color="black") +

autolayer(df_ipsg_plt, Fitted, linewidth=0.3, color="cornflowerblue") + theme1 + xlab("")
p2 <- autoplot(df_ipsg_plt, Residuals, linewidth=0.3, color="cornflowerblue") + theme1 + xlab("")
p1 | p2
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Time Series Regressions
Time Series Regressions

𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡1 + … 𝛽𝑘𝑋𝑡𝑘 + 𝜖𝑡

Issues include
Generally cannot assume data are iid
Have to account for trend, seasonality, cycles
Previously assumed 𝜖𝑡 iid, perhaps no longer appropriate
May have to consider dynamic specification
Key assumption for unbiasedness may not hold
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Time Series Regressions (Dynamic Specifications)

Static Regression: 𝑌𝑡 = 𝛼0 + 𝛼1𝑋𝑡 + 𝜖𝑡

Distributed Lag Models: 𝑌𝑡 = 𝛼0 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + ...𝛽𝑞𝑋𝑡−𝑞 + 𝜖𝑡

Autoregressions: 𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝜖𝑡 , |𝛼1| < 1
Autoregressive Distributed Lag (ARDL) models

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + ... + 𝛽𝑞𝑋𝑡−𝑞 + 𝜖𝑡

How should we interpret the parameters of such models?
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Time Series Regressions (Dynamic Specifications)
Effect of one-unit one-period “impulse” in 𝑋𝑡

𝑌𝑡 = 𝛼0 + 𝛽0 𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + ... + 𝛽𝑞𝑋𝑡−𝑞 + 𝜖𝑡

𝑌𝑡+1 = 𝛼0 + 𝛽0𝑋𝑡+1 + 𝛽1 𝑋𝑡 + 𝛽2𝑋𝑡−1 + ... + 𝛽𝑞𝑋𝑡−𝑞+1 + 𝜖𝑡+1

𝑌𝑡+2 = 𝛼0 + 𝛽0𝑋𝑡+2 + 𝛽1𝑋𝑡+1 + 𝛽2 𝑋𝑡 + ... + 𝛽𝑞𝑋𝑡−𝑞+2 + 𝜖𝑡+2

⋮
𝑌𝑡+𝑞 = 𝛼0 + 𝛽0𝑋𝑡+𝑞 + 𝛽1𝑋𝑡+𝑞−1 + 𝛽2𝑋𝑡+𝑞−2 + ... + 𝛽𝑞 𝑋𝑡 + 𝜖𝑡+𝑞

𝑌𝑡+𝑞+1 = 𝛼0 + 𝛽0𝑋𝑡+𝑞+1 + 𝛽1𝑋𝑡+𝑞 + 𝛽2𝑋𝑡+𝑞−1 + ... + 𝛽𝑞𝑋𝑡+1 + 𝜖𝑡+𝑞+1

Coefficients are called “dynamic multipliers”
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Time Series Regressions (Dynamic Specifications)
Effect of a permanent shift in 𝑋𝑡

𝑌𝑡 = 𝛼0 + 𝛽0 𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + ... + 𝛽𝑞𝑋𝑡−𝑞 + 𝜖𝑡

𝑌𝑡+1 = 𝛼0 + 𝛽0 𝑋𝑡+1 + 𝛽1 𝑋𝑡 + 𝛽2𝑋𝑡−1 + ... + 𝛽𝑞𝑋𝑡−𝑞+1 + 𝜖𝑡+1

𝑌𝑡+2 = 𝛼0 + 𝛽0 𝑋𝑡+2 + 𝛽1 𝑋𝑡+1 + 𝛽2 𝑋𝑡 + ... + 𝛽𝑞𝑋𝑡−𝑞+2 + 𝜖𝑡+2

⋮
𝑌𝑡+𝑞 = 𝛼0 + 𝛽0 𝑋𝑡+𝑞 + 𝛽1 𝑋𝑡+𝑞−1 + 𝛽2 𝑋𝑡+𝑞−2 + ... + 𝛽𝑞 𝑋𝑡 + 𝜖𝑡+𝑞

𝑌𝑡+𝑞+1 = 𝛼0 + 𝛽0 𝑋𝑡+𝑞+1 + 𝛽1 𝑋𝑡+𝑞 + 𝛽2 𝑋𝑡+𝑞−1 + ... + 𝛽𝑞 𝑋𝑡+1 + 𝜖𝑡+𝑞+1

We refer to 𝛽0 + 𝛽1 + ⋯ + 𝛽𝑞 as “long-run cumulative dynamic multiplier”
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Time Series Regressions (Dynamic Specifications)
Interpretation of AR(1)?

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝜖𝑡 , |𝛼1| < 1

A tool for describing “stable cycles”
𝛽1 is the autocorrelation of 𝑌𝑡 at lag one
Can be viewed as “reduced form” expression of cyclical behavior implied by
economic interactions
Member of the ARMA class of models (not covered in this course)
A useful forecasting tool
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Time Series Regressions (Dynamic Specifications)
Consider ARDL(1,1)

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝜖𝑡

This implies an “Infinite Distributed Lag Structure”. Assume |𝛼1| < 1.
Lag: 𝑌𝑡−1 = 𝛼0 + 𝛼1𝑌𝑡−2 + 𝛽0𝑋𝑡−1 + 𝛽1𝑋𝑡−2 + 𝜖𝑡−1

Substitute in ARDL

𝑌𝑡 = 𝛼0(1+𝛼1)+𝛼2
1𝑌𝑡−2 +𝛽0𝑋𝑡 +(𝛽1 +𝛼1𝛽0)𝑋𝑡−1 +𝛼1𝛽1𝑋𝑡−2 +𝜖𝑡 +𝛼1𝜖𝑡−1

Repeat with 𝑌𝑡−2, then 𝑌𝑡−3, and so on
𝑌𝑡 depends on 𝑋𝑡 and infinite number of lags of 𝑋𝑡
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Key Assumption for Consistency

Consider simple linear regression

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖

Key assumption for unbiasedness / consistency is 𝐸(𝜖𝑖 ∣ 𝑋1, 𝑋2, … , 𝑋𝑛) = 0
In time series context, this assumption becomes

𝐸(𝜖𝑡 ∣ 𝑋𝑇 , 𝑋𝑇 −1, … , 𝑋1) = 0

which turns out often to be too strong
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Key Assumption for Consistency

E.g. 1: Regressions with lagged dependent variable, such as the AR(1)

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝜖𝑡 , 𝜖𝑡
𝑖𝑖𝑑∼ (0, 𝜎2) , 𝑡 = 2, 3, ..., 𝑇 .

Assumption 𝐸(𝜖𝑡 ∣ 𝑋𝑇 , 𝑋𝑇 −1, ..., 𝑋1) = 0 is 𝐸(𝜖𝑡 ∣ 𝑌𝑇 , 𝑌𝑇 −1, ..., 𝑌1) = 0
but this is impossible since 𝜖𝑡 must be correlated with 𝑌𝑡

E.g. 2: Regressions 𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝜖𝑡 where noise term may contain information
that can predict future 𝑋, implies correlation between 𝜖𝑡 and future 𝑋𝑠, 𝑠 > 𝑡
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Key Assumption for Consistency

The weaker assumption

𝐸(𝜖𝑡 ∣ 𝑋𝑡) = 0 ”contemporaneous exogeneity”

is much more likely to hold
E.g., for AR(1)

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝜖𝑡

this assumption becomes 𝐸(𝜖𝑡 ∣ 𝑌𝑡−1) = 0, which is possible
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Key Assumption for Consistency

If variables are covariance-stationary and weakly dependent, and if contemporaneous
exogeneity holds, then

although OLS estimator is still biased, it will nonetheless be consistent

̂𝛽𝑜𝑙𝑠
1 = 𝛽1 + (1/𝑇 ) ∑𝑇

𝑡=1(𝑋𝑡 − 𝑋)𝜖𝑡

(1/𝑇 ) ∑𝑇
𝑡=1(𝑋𝑡 − 𝑋)2

As long as 𝑐𝑜𝑣(𝑋𝑡, 𝜖𝑡) = 0 and variables are cov. stationary weakly dependent, a CLT
guarantees that numerator of second term converges to zero
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Time Series Regressions, Autocorrelations in noise terms

We continue with simple linear regression case

𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝜖𝑡

Assume that noise term satisfies contemporaneous exogeneity
Assume (for the moment) that 𝑋𝑡 ≠ 𝑌𝑡−1

With time series data, the default and Heteroskedasticity-robust standard errors
formulas are often not appropriate

in numerator of second term of RHS in previous slide, variance of sum is not sum
of variance
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OLS Properties – Estimator Variances
We give consistent variance estimators for the general 𝑘-regressor case 𝑌𝑡 = 𝑋𝑡∗𝛽 + 𝜖𝑡 where 𝑋𝑡∗ is
the time-𝑡 row vector of regressors

Conditional homoskedasticity and iid sample: V̂ar( ̂𝛽) = 𝜎2 (∑𝑇
𝑡=1 𝑋T

𝑡∗𝑋𝑡∗)
−1

Conditional heteroskedasticity and iid sample:

V̂ar( ̂𝛽) = (
𝑇

∑
𝑡=1

𝑋T
𝑡∗𝑋𝑡∗)

−1

(
𝑇

∑
𝑡=1

̂𝜖2
𝑡 𝑋T

𝑡∗𝑋𝑡∗) (
𝑇

∑
𝑡=1

𝑋T
𝑡∗𝑋𝑡∗)

−1

Conditional Heteroskedasticity and Correlation in 𝑋𝑡∗𝜖𝑡

V̂ar( ̂𝛽) = (
𝑇

∑
𝑡=1

𝑋T
𝑡∗𝑋𝑡∗)

−1

(
𝑇

∑
𝑡=1

̂𝜖2
𝑡 𝑋T

𝑡∗𝑋𝑡∗ +
𝑞

∑
𝑣=1

(1 − 𝑣
𝑞 + 1 ) (𝑋T

𝑡∗𝑋𝑡−𝑣,∗ + 𝑋T
𝑡−𝑣,∗𝑋𝑡∗)𝜖𝑡𝜖𝑡−𝑣) (

𝑇
∑
𝑡=1

𝑋T
𝑡∗𝑋𝑡∗)

−1

“Heteroskedasticity and Autocorrelation Consistent” or (HAC) var-cov matrix estimators (several kinds, the above is
“Newey-West”)
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OLS Properties
Simulation Example: {𝑋𝑡, 𝑌𝑡}100

𝑡=1 where

𝑋𝑡 = 0.8 + 0.8𝑋𝑡−1 + 𝜖𝑡 , 𝜖𝑡
𝑖𝑖𝑑∼ 𝑁(0, 1)

𝑌𝑡 = 0.8 + 0𝑋𝑡 + 𝑢𝑡 , 𝑢𝑡 = 0.95𝑢𝑡−1 + 𝑣𝑡 , 𝑣𝑡
𝑖𝑖𝑑∼ 𝑁(0, 1)
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OLS Properties

mdlsim <- lm(Ysim~Xsim, data=df)
cat("OLS with Default Standard Errors\n")
mdlsim %>% lmtest::coeftest()

OLS with Default Standard Errors

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.24286 0.79751 17.8592 < 2.2e-16 ***
Xsim 0.53330 0.17928 2.9748 0.003692 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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OLS Properties
mdlsim <- lm(Ysim~Xsim, data=df)
cat("OLS with Heteroskedasticity-Robust S.E.\n")
lmtest::coeftest(mdlsim, vcov=sandwich::vcovHC(mdlsim, type="HC2"))

OLS with Heteroskedasticity-Robust S.E.

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.24286 0.85027 16.7509 < 2e-16 ***
Xsim 0.53330 0.18137 2.9404 0.00409 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Not much difference is s.e., since errors are not heteroskedastic
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OLS Properties

mdlsim <- lm(Ysim~Xsim, data=df)
cat("OLS with Heteroskedasticity and Autocorrelation (HAC) Robust S.E.\n")
lmtest::coeftest(mdlsim, vcov=sandwich::NeweyWest)

OLS with Heteroskedasticity and Autocorrelation (HAC) Robust S.E.

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.24286 2.06874 6.8848 5.551e-10 ***
Xsim 0.53330 0.34783 1.5332 0.1284
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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OLS Properties
df <- df %>%
mutate("res"=resid(mdlsim), "Xres"=Xsim*res)

ACF(df, Xres) %>%
autoplot() + theme_minimal() + ylim(-1,1) +
xlab("Lags") + ggtitle("ACF of Xsim * residuals")

−1.0

−0.5

0.0

0.5

1.0

5 10 15 20
Lags

ac
f

ACF of Xsim * residuals

this ACF suggests that the estimator
standard errors in third regression are
appropriate
standard errors in first two regressions
too small since they ignore correlations
in residuals
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Time Series Regressions with AR Errors

We now consider the special case of time series regressions with a particular kind of
autocorrelation in the error term
“Regression with (zero-mean) AR(1) errors”

𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝜖𝑡 , 𝜖𝑡 = 𝜌𝜖𝑡−1 + 𝑢𝑡 , |𝜌|< 1 , 𝑢𝑡
𝑖𝑖𝑑∼ (0, 𝜎2)

How to estimate? A few options:
Continue with OLS, use HAC variance estimators to get s.e. (ok, but not efficient)
“Cochrane-Orcutt procedure” (a kind of “Generalized Least Squares)
Transformation into “Dynamically Complete” ARDL
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Time Series Regressions with AR Errors
Cochrane-Orcutt and ARDL aprroaches use the following transformation:

𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝜖𝑡 , 𝜖𝑡 = 𝜌𝜖𝑡−1 + 𝑢𝑡 , |𝜌|< 1 , 𝑢𝑡
𝑖𝑖𝑑∼ (0, 𝜎2)

⇒ 𝜌𝑌𝑡−1 = 𝜌𝛽0 + 𝜌𝛽1𝑋𝑡−1 + 𝜌𝜖𝑡−1
⇒ 𝑌𝑡 − 𝜌𝑌𝑡−1 = (1 − 𝜌)𝛽0 + 𝛽1(𝑋𝑡 − 𝜌𝑋𝑡−1) + 𝜖𝑡 − 𝜌𝜖𝑡−1

⇒ 𝑌 ∗
𝑡 = 𝛽∗

0 + 𝛽1𝑋∗
𝑡 + 𝑢𝑡

where 𝑌 ∗
𝑡 = 𝑌𝑡 − 𝜌𝑌𝑡−1 and 𝑋∗

𝑡 = 𝑋𝑡 − 𝜌𝑋𝑡−1

Transformed regression is regression without autocorrelation or heteroskedasticity
If 𝐸(𝜖𝑡 ∣ 𝑋𝑇 , 𝑋𝑇 −1, … , 𝑋1) = 0 then all requirements for Gauss-Markov Theorem
are met in the transformed regression, and OLS estimator from transformed
regression will be best linear unbiased
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Time Series Regressions with AR Errors
But 𝜌 is unknown, and must be estimated
“Cochrane-Orcutt” suggestion:

Estimate 𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝜖𝑡, get ̂𝜖𝑡

Run regression ̂𝜖𝑡 = 𝜌 ̂𝜖𝑡−1 + 𝑢𝑡, get ̂𝜌
Compute 𝑌 ∗

𝑡 = 𝑌𝑡 − ̂𝜌𝑌𝑡−1 and 𝑋∗
𝑡 = 𝑋𝑡 − ̂𝜌𝑋𝑡−1

Estimate regression 𝑌 ∗
𝑡 = 𝛽∗

0 + 𝛽1𝑋∗
𝑡 + 𝑢𝑡 using OLS

̂𝛽𝑔𝑙𝑠
1 = ∑𝑇

𝑡=2(𝑋∗
𝑡 − 𝑋∗)(𝑌 ∗

𝑡 − 𝑌 ∗)
∑𝑇

𝑡=2(𝑋∗
𝑡 − 𝑋∗)2
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Time Series Regressions with AR Errors

Alternative: since

𝑌𝑡 − 𝜌𝑌𝑡−1 = (1 − 𝜌)𝛽0 + 𝛽1(𝑋𝑡 − 𝜌𝑋𝑡−1) + 𝑢𝑡

Estimate ARDL version

𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝛼2𝑋𝑡 + 𝛼3𝑋𝑡−1 + 𝑢𝑡

although this is not exactly the same as the original
original has 3 parameters
ARDL version has 4 parameters
To make them exactly the same, have to restrict 𝛼1𝛼2 + 𝛼3 = 0
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Time Series Regressions with AR Errors

Both approaches can be extended to multiple regressors, and also higher-ordered AR
processes, e.g.,

𝑌𝑡 = 𝛽0 + 𝛽1𝑋1𝑡 + … 𝛽𝑘𝑋𝑘𝑡 + 𝜖𝑡 , 𝜖𝑡 = 𝜌1𝜖𝑡−1 + ⋯ + 𝜌𝑝𝜖𝑡−𝑝 + 𝑢𝑡

We omit discuss of higher-ordered AR processes in this course
Most researchers nowadays will either

use OLS with HAC standard errors
use ARDL approach, adding lags of 𝑌𝑡 and regressors until residuals do not
indicate autocorrelations
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Testing for Autocorrelation

To check for autocorrelation in noise terms
check sample a.c.f. of regresson residuals

A more formal approach:
regress

̂𝜖𝑡 on ̂𝜖𝑡−1, … , ̂𝜖𝑡−𝑝, 𝑋1𝑡, … , 𝑋𝑘𝑡

where 𝑋1𝑡, … , 𝑋𝑘𝑡 are the regressors in 𝑋𝑡

test for significance of the coefficients on the lagged residuals

Anthony Tay ECON207 Session 11-12 This Version: 30 Sep 2024 75 / 88



Agenda Characteristics of Economic Time Series A Little TS Theory Time Series Regressions Regression with Trends Roadmap

Regression with Non-Stationary Series

Regression with Non-Stationary Series

Regressions on trending and seasonal series
Regressions on persistent series (containing random walk characteristics)
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Regression with Deterministic Trend
If trend (and seasonality) are deterministic, they should be included in the regression

Otherwise you will almost always get a significant regression, regardless of variables
(basically an omitted variable situation)

E.g., Let 𝑌𝑡 is log IP_SG and 𝑋𝑡 is POULTRY_US and consider the regressions
𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝜖𝑡

𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝛽2𝑡 + 𝛽3𝑡2 + 𝜖𝑡

𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝛽2𝑡 + 𝛽3𝑡2 + seasonal dummies + 𝜖𝑡
mdl1 <- lm(log(IP_SG) ~ POULTRY_US, data=ts01)
mdl2 <- lm(log(IP_SG) ~ POULTRY_US + t + I(tsq/1000), data=ts01)
formula <- paste0("log(IP_SG) ~ POULTRY_US + t + I(tsq/1000) + ", seas) %>% as.formula()
mdl3 <- lm(formula, data=ts01)
stargazer(mdl1, mdl2, mdl3, type="text", omit = seaslist, omit.stat = c("f", "ser", "adj.rsq"))
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Regression with Deterministic Trend
==========================================

Dependent variable:
-----------------------------

log(IP_SG)
(1) (2) (3)

------------------------------------------
POULTRY_US 0.445*** 0.045*** 0.002

(0.010) (0.013) (0.016)

t 0.007*** 0.008***
(0.0004) (0.0004)

I(tsq/1000) -0.004*** -0.006***
(0.001) (0.001)

Constant 1.065*** 2.388*** 2.484***
(0.062) (0.042) (0.051)

------------------------------------------
Observations 420 420 420
R2 0.833 0.976 0.982
==========================================
Note: *p<0.1; **p<0.05; ***p<0.01

𝑡2 divided by 1000 for scaling purposes

Models 1 and 2, no seasonal dummies

Seasonal dummies in Model 3, but
omitted in output

Both log IP_SG and POULTRY_US
clearly not related

POULTRY significant in regressions
without for trend and seasonality

Note high 𝑅2 in all three regressions
(always the case with trending series)
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Regression with Deterministic Trend

E.g., 𝑌𝑡 ∼ log(ELEC_SG), 𝑋𝑡 ∼ log(IP_SG)

𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝜖𝑡

vs. 𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝛽2𝑡 + 𝛽3𝑡2 + 𝑠𝑒𝑎𝑠. 𝑑𝑢𝑚𝑚𝑖𝑒𝑠 + 𝜖𝑡

mdl4 <- lm(log(ELEC_GEN_SG) ~ log(IP_SG), data=ts01)
formula <- paste0("log(ELEC_GEN_SG) ~ log(IP_SG) + t + I(tsq/1000) + ", seas) %>%

as.formula()
mdl5 <- lm(formula, data=ts01)

Anthony Tay ECON207 Session 11-12 This Version: 30 Sep 2024 79 / 88



Agenda Characteristics of Economic Time Series A Little TS Theory Time Series Regressions Regression with Trends Roadmap

Regression with Deterministic Trend

mdl4 %>% summary() %>% coefficients() %>% round(4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.5102 0.0290 155.5907 0
log(IP_SG) 0.8361 0.0075 111.5611 0

mdl5 %>% summary() %>% coefficients() %>% round(4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.2345 0.0429 145.3252 0.0000
log(IP_SG) 0.0888 0.0170 5.2209 0.0000
t 0.0077 0.0001 54.8456 0.0000
I(tsq/1000) -0.0089 0.0002 -58.6607 0.0000
d02 -0.0880 0.0076 -11.5928 0.0000
d03 0.0330 0.0076 4.3205 0.0000
d04 0.0240 0.0074 3.2424 0.0013
d05 0.0640 0.0074 8.6535 0.0000
d06 0.0313 0.0074 4.2070 0.0000
d07 0.0552 0.0074 7.4411 0.0000
d08 0.0457 0.0074 6.1534 0.0000
d09 0.0146 0.0075 1.9333 0.0539
d10 0.0458 0.0075 6.1422 0.0000
d11 -0.0009 0.0074 -0.1280 0.8982
d12 -0.0035 0.0075 -0.4607 0.6452
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Regression with Deterministic Trend
Model is dynamically incomplete
dat <- ts01 %>% select() %>% mutate("res"=residuals(mdl5))
p1 <- dat %>% autoplot(res) + theme_minimal() + xlab("")
p2 <- dat %>% ACF(res) %>% autoplot() + theme_minimal() + xlab("Lag")
(p1 | p2) + plot_annotation(tag_levels = 'a',
title="Residual and Residual ACF ")
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Regression with Deterministic Trend

𝑌𝑡 = 𝛼0 + 𝛽0𝑋𝑡 + 𝛾1𝑌𝑡−1 + 𝛾2𝑌𝑡−2 + 𝛾3𝑌𝑡−3 + 𝑠𝑒𝑎𝑠. 𝑑𝑢𝑚𝑚𝑖𝑒𝑠 + 𝛿1𝑡 + 𝛿2𝑡2 + 𝜖𝑡

formula <- paste0("log(ELEC_GEN_SG) ~ log(IP_SG) + ",
"log(lag(ELEC_GEN_SG,1)) + log(lag(ELEC_GEN_SG,2)) + ",
"log(lag(ELEC_GEN_SG,3)) + t + tsq + ", seas) %>%

as.formula()
mdl6 <- lm(formula, data=ts01)
dat <- ts01 %>% select() %>% filter_index("1983M4"~.) %>%
mutate("fit"=fitted(mdl6), "res"=residuals(mdl6))

p0 <- ts01 %>% autoplot(log(ELEC_GEN_SG), color="red", size=0.4) +
autolayer(dat, fit, size=0.2) + theme1 + xlab("") + ylab("")

p1 <- autoplot(dat, res, size=0.3) + theme1 + xlab("") + ylab("")
p2 <- ACF(dat, res) %>% autoplot() + theme1 +
ylim(c(-1,1)) + xlab("") + ylab("")
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Regression with Deterministic Trend
p0 / (p1 | p2)
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Regression with Persistent Series (A Warning)
We end with a remark on regression with persistent series

Simulate 200 pairs of random walks {𝑋(𝑟)
𝑡 , 𝑌 (𝑟)

𝑡 }100
𝑡=1, 𝑟 = 1, 2, ..., 200:

𝑋(𝑟)
𝑡 = 𝛼𝑋 + 𝑋(𝑟)

𝑡−1 + 𝑢(𝑟)
𝑡

𝑌 (𝑟)
𝑡 = 𝛼𝑌 + 𝑌 (𝑟)

𝑡−1 + 𝑣(𝑟)
𝑡

where 𝑢(𝑟)
𝑡 and 𝑣(𝑟)

𝑡 are independent Normal(0, 1) noise terms, 𝛼𝑋 = 0.5 and 𝛼𝑌 = 0.8.
For each replication 𝑟

regress 𝑌 (𝑟)
𝑡 on 𝑋(𝑟)

𝑡 , with intercept
collect the t-statistic on the coefficient of 𝑋(𝑟)

𝑡
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Regression with Persistent Series (A Warning)
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Regression with Persistent Series (A Warning)

Repeat with 𝛼𝑋 = 𝛼𝑌 = 0 (i.e., no drift)
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Regression with Persistent Series

Regressions with persistent series not always spurious, can give very good results
Simple (maybe incomplete) solution for persistent series is to take first differences
(i.e., transform to stationarity)
Stochastic vs Deterministic Trend?
Will have to leave further details to “next course”
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Roadmap

(Previous) Session 1: Statistics Review
(Previous) Session 2: Simple Linear Regression
(Previous) Session 3: Estimator Standard Errors; Multiple Linear Regression
(Previous) Session 4: Matrix Algebra
(Previous) Session 5: OLS using Matrix Algebra
(Previous) Session 6: Hypothesis Testing
(Previous) Session 7: Prediction
(Previous) Session 8: Instrumental Variable Regression
(Previous) Session 9: GLS / Panel Data Regressions
(Previous) Session 10: Maximum Likelihood Estimation / Limited Dep. Var. Models
This Session 11-12: Introduction to Time Series / Time Series Regressions
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