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Matrix Definition

Session 4.1

Matrix Definitions and Operations
Types of matrices, notation

Additions, scalar multiplications, Hadamard product, matrix multiplication,
transposition
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Matrix Definition

rows
⎡
⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤
⎥⎥
⎦

columns

Matrix with 𝑚 rows, 𝑛 columns
Order or Dimension 𝑚 × 𝑛
If 𝑚 = 𝑛: square matrix
If 𝑚 > 1 and 𝑛 = 1: column vector
If 𝑚 = 1 and 𝑛 > 1: row vector
If 𝑚 = 1 and 𝑛 = 1: scalar

𝑎𝑖𝑗 is the (𝑖, 𝑗)th element or term of the matrix
Other notational conventions:

(𝑎𝑖𝑗)𝑚×𝑛 refers to a 𝑚 × 𝑛 matrix with (𝑖, 𝑗)th element 𝑎𝑖𝑗

(𝐴)𝑖𝑗 refers to the (𝑖, 𝑗)th element of the matrix 𝐴
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Matrix Operations (Add, Hadamard Prod, Scalar Mult.)
Given two matrices 𝐴 and 𝐵 of the same dimensions:

Equality: 𝐴 = 𝐵 ⟺ (𝐴)𝑖𝑗 = (𝐵)𝑖𝑗 for all 𝑖 = 1, … , 𝑚; 𝑗 = 1, … , 𝑛
Addition: (𝐴 + 𝐵)𝑖𝑗 = (𝐴)𝑖𝑗 + (𝐵)𝑖𝑗 for all 𝑖 = 1, … , 𝑚; 𝑗 = 1, … , 𝑛

Matrix addition is element-by-element addition

Hadamard Product: (𝐴 ⊙ 𝐵)𝑖𝑗 = (𝐴)𝑖𝑗(𝐵)𝑖𝑗
Hadamard Product is element-by-element multiplication
Alternative notations for Hadamard Product: 𝐴 ∘ 𝐵, 𝐴 ∗ 𝐵

For any matrix 𝐴 and any scalar 𝛼 ∈ ℝ

Scalar Multiplication: (𝛼𝐴)𝑖𝑗 = (𝐴𝛼)𝑖𝑗 = 𝛼(𝐴)𝑖𝑗 for all 𝑖 = 1, … , 𝑚; 𝑗 = 1, … , 𝑛
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Matrix Operations (Add, Hadamard Prod, Scalar Mult.)
Examples: If 𝐴 = [𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23
] and 𝐵 = [𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23
], then

𝐴 + 𝐵 = [𝑎11 + 𝑏11 𝑎12 + 𝑏12 𝑎13 + 𝑏13
𝑎21 + 𝑏21 𝑎22 + 𝑏22 𝑎23 + 𝑏23

]

𝐴 ⊙ 𝐵 = [𝑎11𝑏11 𝑎12𝑏12 𝑎13𝑏13
𝑎21𝑏21 𝑎22𝑏22 𝑎23𝑏23

]

𝛼𝐴 = 𝐴𝛼 = [𝛼𝑎11 𝛼𝑎12 𝛼𝑎13
𝛼𝑎21 𝛼𝑎22 𝛼𝑎23

]

𝐴 − 𝐵 = 𝐴 + (−1)𝐵 = [𝑎11 − 𝑏11 𝑎12 − 𝑏12 𝑎13 − 𝑏13
𝑎21 − 𝑏21 𝑎22 − 𝑏22 𝑎23 − 𝑏23

]
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Matrix Operations (Add, Hadamard Prod, Scalar Mult.)

The following should be obvious:
(𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶) , (𝐴 ⊙ 𝐵) ⊙ 𝐶 = 𝐴 ⊙ (𝐵 ⊙ 𝐶)
𝐴 + 𝐵 = 𝐵 + 𝐴 , 𝐴 ⊙ 𝐵 = 𝐵 ⊙ 𝐴
𝐴 ⊙ (𝐵 + 𝐶) = 𝐴 ⊙ 𝐵 + 𝐴 ⊙ 𝐶
𝛼(𝐴 + 𝐵) = 𝛼𝐴 + 𝛼𝐵 , (𝛼 + 𝛽)𝐴 = 𝛼𝐴 + 𝛽𝐴
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Matrix Operations (Transposition)

Matrix Transpose of 𝐴, denoted 𝐴T, is defined by (𝐴T)𝑖𝑗 = 𝐴𝑗𝑖

e.g., if 𝐴 = [𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

] , then 𝐴T = ⎡⎢
⎣

𝑎11 𝑎21
𝑎12 𝑎22
𝑎13 𝑎23

⎤⎥
⎦

e.g., if 𝑥 = ⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

, then 𝑥T = [𝑥1 𝑥2 𝑥3]

We often write column vectors as 𝑥 = [𝑥1 𝑥2 ⋯ 𝑥𝑛]T to save space

Sometimes a matrix transpose is written as 𝐴′ instead of 𝐴T
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Matrix Operations (Transposition)
Clearly

(𝐴 + 𝐵)T = 𝐴T + 𝐵T

(𝐴 ⊙ 𝐵)T = 𝐴T ⊙ 𝐵T

(𝛼𝐴)T = 𝛼𝐴T

(𝐴T)T = 𝐴
Definition: A square matrix is symmetric if (𝐴)𝑖𝑗 = (𝐴)𝑗𝑖, i.e., 𝐴T = 𝐴

e.g., ⎡⎢
⎣

1 3 2
3 4 6
2 6 3

⎤⎥
⎦

is symmetric, ⎡⎢
⎣

1 3 2
7 4 6
2 6 3

⎤⎥
⎦

is not
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Matrix Operations (Matrix Multiplication)

Matrix Multiplication/Product: For any 𝑚 × 𝑛 matrix 𝐴 and 𝑛 × 𝑝 matrix 𝐵, we have

(𝐴𝐵)𝑖𝑗 =
𝑛

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗 .

i.e., (𝑖, 𝑗)th element of 𝐴𝐵 is the sum of the product of the elements of the 𝑖th row of
𝐴 with the corresponding elements in the 𝑗th column of 𝐵
For example,

(𝐴𝐵)11 = ∑𝑛
𝑘=1 𝑎1𝑘𝑏𝑘1 = 𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 + ⋯ + 𝑎1𝑛𝑏𝑛1

(𝐴𝐵)23 = ∑𝑛
𝑘=1 𝑎2𝑘𝑏𝑘3 = 𝑎21𝑏13 + 𝑎22𝑏23 + 𝑎23𝑏33 + ⋯ + 𝑎2𝑛𝑏𝑛3
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Matrix Operations
For the product of a 3 × 3 matrix and a 3 × 2 matrix, we have

⎡
⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤
⎥
⎦

⎡
⎢
⎣

𝑏11
𝑏21
𝑏31

𝑏12
𝑏22
𝑏32

⎤
⎥
⎦

= ⎡⎢
⎣

𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 •
• •
• •

⎤⎥
⎦

⎡
⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤
⎥
⎦

⎡
⎢
⎣

𝑏11
𝑏21
𝑏31

𝑏12
𝑏22
𝑏32

⎤
⎥
⎦

= ⎡⎢
⎣

∑3
𝑘=1 𝑎1𝑘𝑏𝑘1 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32

• •
• •

⎤⎥
⎦

⎡
⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤
⎥
⎦

⎡
⎢
⎣

𝑏11
𝑏21
𝑏31

𝑏12
𝑏22
𝑏32

⎤
⎥
⎦

= ⎡
⎢
⎣

∑3
𝑘=1 𝑎1𝑘𝑏𝑘1 ∑3

𝑘=1 𝑎1𝑘𝑏𝑘2
𝑎21𝑏11 + 𝑎22𝑏21 + 𝑎23𝑏31 •

• •

⎤
⎥
⎦

and so on.
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Matrix Operations (Matrix Multiplication)

If 𝐴 = ⎡⎢
⎣

2 8
3 0
5 1

⎤⎥
⎦
, 𝐵 = [4 7

6 9] and 𝐶 = [1 3 4
6 2 5] then

𝐴𝐵 = ⎡⎢
⎣

2 8
3 0
5 1

⎤⎥
⎦

[4 7
6 9] = ⎡⎢

⎣

2 ⋅ 4 + 8 ⋅ 6 2 ⋅ 7 + 8 ⋅ 9
3 ⋅ 4 + 0 ⋅ 6 3 ⋅ 7 + 0 ⋅ 9
5 ⋅ 4 + 1 ⋅ 6 5 ⋅ 7 + 1 ⋅ 9

⎤⎥
⎦

= ⎡⎢
⎣

56 86
12 21
26 44

⎤⎥
⎦

.

𝐴 and 𝐵 “conformable” for the product 𝐴𝐵 requires no.cols(A) = no.rows(B)
Even if 𝐴 and 𝐵 are conformable for 𝐴𝐵, the product 𝐵𝐴 might not be possible
Even if 𝐴𝐵 and 𝐵𝐴 are possible, they may not be equal (might not even be the
same dimensions)
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Matrix Operation (Matrix Multiplication)
A = matrix(c(2,8,3,0,5,1),

nrow=3, byrow=T)
A

[,1] [,2]
[1,] 2 8
[2,] 3 0
[3,] 5 1

B = matrix(c(4,7,6,9),
nrow=2, byrow=T)

B
[,1] [,2]

[1,] 4 7
[2,] 6 9

C = matrix(c(1,3,4,6,2,5),
nrow=2, byrow=T)

C
[,1] [,2] [,3]

[1,] 1 3 4
[2,] 6 2 5

A %*% B
[,1] [,2]

[1,] 56 86
[2,] 12 21
[3,] 26 44
B %*% A
Error in B %*% A: non-conformable arguments

A %*% C
[,1] [,2] [,3]

[1,] 50 22 48
[2,] 3 9 12
[3,] 11 17 25
C %*% A

[,1] [,2]
[1,] 31 12
[2,] 43 53
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Matrix Operations (Matrix Multiplication)
Easy to show

(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) if 𝐴 is 𝑚 × 𝑛, 𝐵 is 𝑛 × 𝑝 and 𝐶 is 𝑝 × 𝑞
𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 if 𝐴 is 𝑚 × 𝑛, 𝐵 and 𝐶 are 𝑛 × 𝑝
(𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶 if 𝐴 and 𝐵 are 𝑚 × 𝑛 and 𝐶 is 𝑛 × 𝑝

Proof of (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶):

((𝐴𝐵)𝐶)𝑖𝑗 =
𝑝

∑
𝑘=1

((𝐴𝐵))𝑖𝑘(𝐶)𝑘𝑗 =
𝑝

∑
𝑘=1

(
𝑛

∑
𝑟=1

(𝐴)𝑖𝑟(𝐵)𝑟𝑘) (𝐶)𝑘𝑗

=
𝑛

∑
𝑟=1

(𝐴)𝑖𝑟 (
𝑝

∑
𝑘=1

(𝐵)𝑟𝑘(𝐶)𝑘𝑗) =
𝑛

∑
𝑟=1

(𝐴)𝑖𝑟(𝐵𝐶)𝑟𝑗 = (𝐴(𝐵𝐶))𝑖𝑗
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Matrix Operations

In some respect, matrix multiplication behaves quite differently from multiplication of
numbers:
e.g.,

[2 4
1 2] [−2 4

1 −2] = [0 0
0 0]

[ 1 𝑏
−1

𝑏 −1] [ 1 𝑏
−1

𝑏 −1] = [0 0
0 0]

A matrix with all elements 0 is the “zero matrix” 0𝑚×𝑛

Sometimes subscripts left out
𝐴0 = 0
0𝐵 = 0
But 𝐴𝐵 = 0 does not imply 𝐴 = 0 or 𝐵 = 0
Possible for 𝐴 ≠ 0, yet 𝐴2 = 𝐴𝐴 = 0
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Matrix Operations (Matrix Multiplication)

It is possible for 𝐴𝑏 = 𝐴𝑐, yet 𝑏 ≠ 𝑐
e.g.,

[1 2
2 4] [1

0] = [1
2] = [1 2

2 4] [ 0
1/2]

There is an important special case where 𝐴𝑏 = 𝐴𝑐 ⟹ 𝑏 = 𝑐
We’ll come to it later
Important to understand 𝐴𝑏 = 𝐴𝑐 does not imply 𝑏 = 𝑐 in general
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Relationship between Matrix Multiplication and Transpose
Suppose 𝐴 is 𝑚 × 𝑛 and 𝐵 is 𝑛 × 𝑝, then

(𝐴𝐵)T = 𝐵T𝐴T

Proof: We have

((𝐴𝐵)T)𝑖𝑗 = (𝐴𝐵)𝑗𝑖 =
𝑛

∑
𝑘=1

(𝐴)𝑗𝑘(𝐵)𝑘𝑖

=
𝑛

∑
𝑘=1

(𝐴T)𝑘𝑗(𝐵T)𝑖𝑘

=
𝑛

∑
𝑘=1

(𝐵T)𝑖𝑘(𝐴T)𝑘𝑗 = (𝐵T𝐴T)𝑖𝑗
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The Identity Matrix
The identity matrix 𝐼𝑛 is the 𝑛 × 𝑛 matrix such that

(𝐼𝑛)𝑖𝑗 = {1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗 for 𝑖, 𝑗 = 1, … , 𝑛

That is,

𝐼𝑛 =
⎡
⎢
⎢
⎢
⎣

1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0
0 0 ⋯ 0 1

⎤
⎥
⎥
⎥
⎦

If 𝐴 is 𝑚 × 𝑛 then
𝐴𝐼𝑛 = 𝐴 and 𝐼𝑚𝐴 = 𝐴

Anthony Tay ECON207 Session 4 This Version: 17 Sep 2024 18 / 84



Agenda Definitions and Matrix Operations Inner Product Inverse Matrices Partitioned Matrices Vectors of RVs PCA Roadmap

Diagonal, Upper and Lower Triangular Matrices

The identity matrix is an example of a diagonal matrix
A diagonal matrix 𝐷 is a square matrix such that (𝐷)𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗

It doesn’t matter what the diagonal elements (𝐷)𝑖𝑖 are
Diagonal matrices are often written diag(𝑑1, 𝑑2, … , 𝑑𝑛)
The identity matrix is diag(1, 1, … , 1)

A lower triangular matrix 𝐿 is a square matrix such that (𝐿)𝑖𝑗 = 0 for all 𝑖 < 𝑗
An upper triangular matrix 𝑈 is a square matrix such that (𝑈)𝑖𝑗 = 0 for all 𝑖 > 𝑗
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Diagonal, Upper and Lower Triangular Matrices

diagonal

𝐷 =
⎡
⎢
⎢
⎢
⎣

∗ 0 ⋯ 0 0
0 ∗ ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ ∗ 0
0 0 ⋯ 0 ∗

⎤
⎥
⎥
⎥
⎦

lower triangular

𝐿 =
⎡
⎢
⎢
⎢
⎣

∗ 0 ⋯ 0 0
∗ ∗ ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
∗ ∗ ⋯ ∗ 0
∗ ∗ ⋯ ∗ ∗

⎤
⎥
⎥
⎥
⎦

upper triangular

𝑈 =
⎡
⎢
⎢
⎢
⎣

∗ ∗ ⋯ ∗ ∗
0 ∗ ⋯ ∗ ∗
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ ∗ ∗
0 0 ⋯ 0 ∗

⎤
⎥
⎥
⎥
⎦

where * means any value, including 0
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Important examples of matrix products
Example: The general linear system of equations

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

can be written as
⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑚

⎤
⎥⎥
⎦

or 𝐴𝑥 = 𝑏

Often the problem is: given 𝐴 and 𝑏, want to find 𝑥 so that equation holds
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Important examples of matrix products
If 𝑥 = [𝑥1 𝑥2 ⋯ 𝑥𝑛]T, then

Inner Product: 𝑥T𝑥 = [𝑥1 𝑥2 ⋯ 𝑥𝑛]
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

=
𝑛

∑
𝑖=1

𝑥2
𝑖

The norm of a vector 𝑥 is defined as ‖𝑥‖ =
√

𝑥T𝑥

Outer Product: 𝑥𝑥T =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

[𝑥1 𝑥2 ⋯ 𝑥𝑛] =
⎡
⎢⎢
⎣

𝑥2
1 𝑥1𝑥2 ⋯ 𝑥1𝑥𝑛

𝑥2𝑥1 𝑥2
2 ⋯ 𝑥2𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑛𝑥1 𝑥𝑛𝑥2 ⋯ 𝑥2

𝑛

⎤
⎥⎥
⎦
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Important examples of matrix products

If 𝑥 = [𝑥1 𝑥2 ⋯ 𝑥𝑛]T, and 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛, then 𝑥𝑇 𝐴𝑥 = ∑𝑛
𝑖=1 ∑𝑛

𝑗=1 𝑥𝑖𝑥𝑗𝑎𝑖𝑗

For the case when 𝑛 = 3:

𝑥𝑇 𝐴𝑥 = [𝑥1 𝑥2 𝑥3] ⎡⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎥
⎦

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= [𝑥1𝑎11 + 𝑥2𝑎21 + 𝑥3𝑎31 𝑥1𝑎12 + 𝑥2𝑎22 + 𝑥3𝑎32 𝑥1𝑎13 + 𝑥2𝑎23 + 𝑥3𝑎33] ⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= 𝑥2
1𝑎11 + 𝑥2

2𝑎22 + 𝑥2
3𝑎33 + 𝑥1𝑥2(𝑎12 + 𝑎21) + 𝑥1𝑥3(𝑎13 + 𝑎31) + 𝑥2𝑥3(𝑎23 + 𝑎32)

When 𝐴 is symmetric, 𝑥T𝐴𝑥 is called a quadratic form
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Session 4.2

Session 4.2 Comments on the Inner Product

Geometric understanding of the inner product
Norms and angles between vectors
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Comments on the Inner Product

In some contexts, a “vector” is simply an ordered list of numbers with no shape
e.g., an general 𝑛-vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
e.g., a specific 4-vector (1, 5, 3, 2)

Inner product / Scalar Product / Dot Product 𝑢 ⋅ 𝑣 or ⟨𝑢, 𝑣⟩

𝑢 ⋅ 𝑣 = (𝑢1, 𝑢2, … , 𝑢𝑛) ⋅ (𝑣1, 𝑣2, … , 𝑣𝑛) = 𝑢1𝑣1 + 𝑢2𝑣2 + ⋯ + 𝑢𝑛𝑣𝑛 =
𝑛

∑
𝑖=1

𝑢𝑖𝑣𝑖

In matrix algebra, we organize vectors into rows or columns
If 𝑢 and 𝑣 are columns vectors, the inner product is 𝑢T𝑣
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Comments on the Inner Product
We can think of vectors as points in space

e.g. for vectors in ℝ2 such as 𝑢 = (𝑢1, 𝑢2) = (−1, 1), 𝑣 = (𝑣1, 𝑣2) = (2, 2)

u

v

O

−1

0

1

2

3

−2 0 2 4
x

y

The norm of 𝑣 is the distance from
𝑂 = (0, 0) to 𝑣 = (2, 2)

‖𝑣‖ = √𝑣2
1 + 𝑣2

2 =
√

2

(Pythagoras’s Theorem)
distance from 𝑢 to 𝑣 is

√(𝑣1 − 𝑢1)2 + (𝑣2 − 𝑢2)2 = ‖𝑣 − 𝑢‖
=

√
10
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Comments on the Inner Product

u

v

O

−0.5u

1.5v

−1

0

1

2

3

−2 0 2 4
x

y

Can view a vector 𝑣 as an “arrow” from 𝑂 to 𝑣
‖𝑣‖ is length of arrow representing 𝑣
But use “norm” instead of “length”

Scalar Multiplication 𝛼𝑣
Stretches a vector if |𝛼| > 1)
Shrinks a vector if |𝛼| < 1
Returns the vector to the origin if 𝛼 = 0
flips the direction of the vector if 𝛼 < 0

The vector 𝑣
‖𝑣‖ has unit norm
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Comments on the Inner Product

u

v

O

u+vu+vu+v

vvv uuu

−1

0

1

2

3

−2 0 2 4
x

y

Vector Addition:

𝑢 + 𝑣 is the diagonal, starting at 𝑂, of
the parallelogram formed by 𝑢 and 𝑣
When thinking of vectors as “arrows”, the
starting position is irrelevant

The black arrow 𝑣 and the blue arrow are
the same vector

The red arrow 𝑢 and the red arrow are
the same vector
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Comments on the Inner Product

u

v

O

v−uv−u

v−uv−u

−1

0

1

2

3

−2 0 2 4
x

y

Since
𝑢 + (𝑣 − 𝑢) = 𝑣

the vector 𝑣 − 𝑢 is represented by the
arrow from 𝑢 to 𝑣
It is also represented by the arrow from
the origin to the point

(3, 1) = (2, 2) − (−1, 1)
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Comments on the Inner Product
e.g., 𝑤 = (−2, 1) and 𝑧 = (3, 2)

w

z

z−wz−w

θ

−2

0

2

−2 0 2 4
x

y

Interpretation of the dot product of two
different vectors:

If 𝜃 is the angle formed at the origin by two
vectors 𝑤 and 𝑧, then

𝑤 ⋅ 𝑧 = ‖𝑤‖ ‖𝑧‖ cos 𝜃

i.e., 𝑤
‖𝑤‖ ⋅ 𝑧

‖𝑧‖ = cos 𝜃

i.e., the dot product of two unit vectors gives
the cosine of the angle formed by the two
vectors at the origin
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Comments on the Inner Product
Proof using the Cosine Rule:

‖𝑧 − 𝑤‖2 = ‖𝑧‖2 + ‖𝑤‖2 − 2 ‖𝑧‖ ‖𝑤‖ cos 𝜃

(NB: Pythagoras’s Theorem is when 𝜃 = 𝜋/2, so cos 𝜃 = 0)
Converting to inner products (we’ll take the vectors to be column vectors)

(𝑧 − 𝑤)T(𝑧 − 𝑤) = (𝑧T − 𝑤T)(𝑧 − 𝑤)
= 𝑧T𝑧 + 𝑤T𝑤 − 𝑧T𝑤 − 𝑤T𝑧
= 𝑧T𝑧 + 𝑤T𝑤 − 2𝑤T𝑧 (since 𝑧T𝑤 = 𝑤T𝑧)

Comparing the two, we have 𝑤 ⋅ 𝑧 = ‖𝑧‖ ‖𝑤‖ cos 𝜃
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Comments on the Inner Product

The Cosine Rule also gives the Triangle Inequality

Since −1 ≤ cos 𝜃 ≤ 1, we have

‖𝑧 − 𝑤‖2 = ‖𝑧‖2 + ‖𝑤‖2 − 2 ‖𝑧‖ ‖𝑤‖ cos 𝜃
≤ ‖𝑧‖2 + ‖𝑤‖2 + 2 ‖𝑧‖ ‖𝑤‖
= (‖𝑧‖ + ‖𝑤‖)2

‖𝑧 − 𝑤‖ ≤ ‖𝑧‖ + ‖𝑤‖

Length of one side of a triangle is less than the sum of the lengths of the other two sides
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Comments on the Inner Product
All of this extends to 𝑛-vectors

If 𝑥 = [𝑥1 𝑥2 ⋯ 𝑥𝑛]T, then

‖𝑥‖ = √∑𝑛
𝑖=1 𝑥2

𝑖 =
√

𝑥T𝑥 is the “distance” from the origin to 𝑥
‖𝑥 − 𝑦‖ = √∑𝑛

𝑖=1(𝑥𝑖 − 𝑦𝑖)2 is the “distance” between 𝑥 and 𝑦

But what is “distance” in 𝑛-dimensions? We can show ‖𝑥 − 𝑦‖ satisfies the three main
properies of distance:

it is non-negative (obvious)
it is symmetric, i.e., distance between 𝑥 and 𝑦 is the same as distance between 𝑦
and 𝑥 (also obvious)
it satisfies the triangle inequality
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Comments on the Inner Product
The key is the Cauchy-Schwarz Inequality: For any two 𝑛 × 1 vectors 𝑢 and 𝑣, we
have

|𝑢T𝑣| ≤ ‖𝑢‖‖𝑣‖
Equality holds only if 𝑢 = 𝛼𝑣
Proof:

If 𝑢 = 0𝑛×1 or 𝑣 = 0𝑛×1, then the CS-Inequality holds trivially with equality
𝑢 = 𝛼𝑣, then

|𝑢T𝑣| = |(𝛼𝑣)T𝑣| = |𝛼|‖𝑣‖2 and ‖𝑢‖‖𝑣‖ = ‖𝛼𝑣‖‖𝑣‖ = |𝛼|‖𝑣‖2

so the CS-Inequality holds (with equality)
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Comments on the Inner Product

If 𝑢 ≠ 𝛼𝑣 for any 𝛼. Then

0 < (𝑢−𝛼𝑣)T(𝑢−𝛼𝑣) = 𝑢T𝑢−𝛼𝑣T𝑢−𝛼𝑢T𝑣+𝛼2𝑣T𝑣 = 𝑢T𝑢−2𝛼𝑢T𝑣+𝛼2𝑣T𝑣

This inequality holds for all 𝛼. At the particular values 𝛼 = 𝑢T𝑣/𝑣T𝑣, we have

0 < 𝑢T𝑢 − 2𝑢T𝑣
𝑣T𝑣 𝑢T𝑣 + (𝑢T𝑣)2

(𝑣T𝑣)2 𝑣T𝑣 = 𝑢T𝑢 − (𝑢T𝑣)2

𝑣T𝑣
⟹ (𝑢T𝑢)(𝑣T𝑣) < (𝑢T𝑣)2

Taking square roots gives the result |𝑢T𝑣| ≤ ‖𝑢‖‖𝑣‖
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Comments on the Inner Product

Cauchy-Schwarz Inequality implies the Triangle inequality
Let 𝑥, 𝑦, 𝑧 be any three 𝑛 × 1 vectors and let 𝑢 = 𝑥 − 𝑦 and 𝑣 = 𝑦 − 𝑧. Then

‖𝑥 − 𝑧‖2 = ‖𝑥 − 𝑦 + 𝑦 − 𝑧‖2

= (𝑥 − 𝑦 + 𝑦 − 𝑧)T(𝑥 − 𝑦 + 𝑦 − 𝑧)
= (𝑥 − 𝑦)T(𝑥 − 𝑦) + 2(𝑥 − 𝑦)T(𝑦 − 𝑧) + (𝑦 − 𝑧)T(𝑦 − 𝑧)
≤ ‖𝑥 − 𝑦‖2 + ‖𝑦 − 𝑧‖2 + 2|(𝑥 − 𝑦)T(𝑦 − 𝑧)|
≤ ‖𝑥 − 𝑦‖2 + ‖𝑦 − 𝑧‖2 + 2‖𝑥 − 𝑦‖ ‖𝑦 − 𝑧‖ = (‖𝑥 − 𝑦‖ + ‖𝑦 − 𝑧‖)2

Taking square roots gives ‖𝑥 − 𝑧‖ ≤ ‖𝑥 − 𝑦‖ + ‖𝑦 − 𝑧‖
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Comments on the Inner Product
We can treat ‖𝑥 − 𝑦‖ as “distance” from 𝑥 to 𝑦 even in 𝑛-dimensions

even though we can’t literally measure this distance with a ruler

We can treat ‖𝑥‖ as “distance” from origin to 𝑥 (“norm”)

Furthermore, since |𝑥T𝑦| ≤ ‖𝑥‖‖𝑦‖ implies −1 ≤ 𝑥T𝑦
‖𝑥‖‖𝑦‖ ≤ 1

We define the “angle” between 𝑥 and 𝑦 to be 𝜃 such that

cos 𝜃 = 𝑥T𝑦
‖𝑥‖‖𝑦‖

If 𝑥T𝑦 = 0 we say that 𝑥 and 𝑦 are orthogonal (general 𝑛-dimensional version of
“perpendicular”)
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Session 4.3

Session 4.3 Inverse Matrices

Left-, right-, and “two-sided” inverse matrix
Properties of the inverse matrix
Determinants

Less emphasis on methods for computing inverses and determinants
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The Inverse Matrix
Let 𝐴 be an 𝑚 × 𝑛 matrix

The 𝑛 × 𝑚 matrix 𝐵 is a left-inverse of 𝐴 if 𝐵𝐴 = 𝐼𝑛

The 𝑛 × 𝑚 matrix 𝐶 is a right-inverse of 𝐴 if 𝐴𝐶 = 𝐼𝑚.

Let 𝐴 = ⎡⎢
⎣

1 1
2 1
4 2

⎤⎥
⎦

and 𝐵 = [−1 0.2 0.4
2 −0.2 −0.4]

𝐵 is a left-inverse of 𝐴 (or 𝐴 is the right-inverse of 𝐵) since

𝐵𝐴 = [−1 0.2 0.4
2 −0.2 −0.4] ⎡⎢

⎣

1 1
2 1
4 2

⎤⎥
⎦

= [−1 + 0.4 + 1.6 −1 + 0.2 + 0.8
2 − 0.4 − 1.6 2 − 0.2 − 0.8 ] = [1 0

0 1]
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The Inverse Matrix

𝐵 is not a right-inverse of 𝐴 since 𝐴𝐵 = ⎡⎢
⎣

1 0 0
0 0.2 0.4
0 0.4 0.8

⎤⎥
⎦

In fact 𝐴 has no right-inverse

Suppose 𝐴𝐶 = ⎡⎢
⎣

1 1
2 1
4 2

⎤⎥
⎦

[𝑎 𝑏 𝑐
𝑑 𝑒 𝑓] = ⎡⎢

⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

then we have

2𝑏 + 𝑒 = 1 and 4𝑏 + 2𝑒 = 0

which is a contradiction
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The Inverse Matrix

𝐴 has left- and right-inverse only if it is square, and they will be the same matrix, i.e.,
If 𝐴 is 𝑛 × 𝑛, and 𝐵𝐴 = 𝐴𝐶 = 𝐼𝑛, then it must be that 𝐵 = 𝐶

𝐵𝐴 = 𝐼𝑛 ⟹ 𝐵𝐴𝐶 = 𝐼𝑛𝐶 ⟹ 𝐵𝐼𝑛 = 𝐶 ⟹ 𝐵 = 𝐶

Then 𝐵 = 𝐶 is the “two-sided inverse”, or simply the inverse of 𝐴, denoted 𝐴−1

The inverse of a 𝑛 × 𝑛 matrix 𝐴, if it exists, is the unique matrix 𝐴−1 such that

𝐴−1𝐴 = 𝐼𝑛 = 𝐴𝐴−1
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The Inverse Matrix
We emphasize

𝐴 has a (two-sided) inverse only if it is square
But not all square matrices have an inverse

Examples:
𝐴 = [1 3

2 4] is 𝐴−1 = −1
2 [ 4 −3

−2 1 ]

Verify by direct multiplication:

𝐴−1𝐴 = −1
2 [ 4 −3

−2 1 ] [1 3
2 4] = [1 0

0 1]
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The Inverse Matrix

The matrix 𝐴 = [1 2
2 4] has no inverse

Proof: Suppose

[1 2
2 4] [𝑎 𝑏

𝑐 𝑑] = [ 𝑎 + 2𝑐 𝑏 + 2𝑑
2𝑎 + 4𝑐 2𝑏 + 4𝑑] = [1 0

0 1]

This implies 𝑎 + 2𝑐 = 1 but 2𝑎 + 4𝑐 = 2(𝑎 + 2𝑐) = 0 which gives a contradiction
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The Inverse Matrix
Consider the system of 𝑛 equations in 𝑛 unknowns

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

⟹
⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑚

⎤
⎥⎥
⎦

or 𝐴𝑥 = 𝑏

If 𝐴 has an inverse, then the unique solution to this system is

𝐴𝑥 = 𝑏 ⟺ 𝑥 = 𝐴−1𝑏

𝐴𝑥 = 𝑏 ⇒ 𝐴−1𝐴𝑥 = 𝐴−1𝑏 ⇒ 𝑥 = 𝐴−1𝑏
𝑥 = 𝐴−1𝑏 ⇒ 𝐴𝑥 = 𝐴𝐴−1𝑏 = 𝑏 so 𝑥 = 𝐴−1𝑏 is indeed a solution
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The Inverse Matrix
Example: consider the system

𝑥1 + 3𝑥2 = 1
2𝑥1 + 4𝑥2 = 3 or [1 3

2 4] [𝑥1
𝑥2

] = [1
3] or 𝐴𝑥 = 𝑏

We saw earlier that the inverse of 𝐴 = [1 3
2 4] is 𝐴−1 = −1

2 [ 4 −3
−2 1 ]

The unique solution is

𝐴−1𝑏 = −1
2 [ 4 −3

−2 1 ] [1
3] = [ 5/2

−1/2]
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The Inverse Matrix
(Warning) The same argument doesn’t quite hold for left-inverses
Suppose the system is 𝐴𝑥 = 𝑏 where 𝐴 is 𝑚 × 𝑛, 𝑚 < 𝑛, with left-inverse 𝐴−1

𝑙𝑒𝑓𝑡

Pre-multiplying both side of 𝐴𝑥 = 𝑏 by 𝐴−1
𝑙𝑒𝑓𝑡 gives

𝐴−1
𝑙𝑒𝑓𝑡𝐴𝑥 = 𝐴−1

𝑙𝑒𝑓𝑡𝑏 ⟹ 𝑥 = 𝐴−1
𝑙𝑒𝑓𝑡𝑏

However, when we check if 𝑥 = 𝐴−1
𝑙𝑒𝑓𝑡𝑏 is a solution, we get

𝐴𝑥 = 𝐴𝐴−1
𝑙𝑒𝑓𝑡𝑏

which may or may not be equal to 𝑏, since 𝐴𝐴−1
𝑙𝑒𝑓𝑡 ≠ 𝐼𝑚

If 𝐴𝐴−1
𝑙𝑒𝑓𝑡𝑏 = 𝑏, there is a unique solution and you have found it

If 𝐴𝐴−1
𝑙𝑒𝑓𝑡𝑏 ≠ 𝑏, there is no solution
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The Inverse Matrix
Example: consider the systems

(i) ⎡⎢
⎣

1 2
2 1
3 3

⎤⎥
⎦

[𝑥1
𝑥2

] = ⎡⎢
⎣

1
1
2

⎤⎥
⎦

and (ii) ⎡⎢
⎣

1 2
2 1
3 3

⎤⎥
⎦

[𝑥1
𝑥2

] = ⎡⎢
⎣

1
1
1

⎤⎥
⎦

which we write as (i) 𝐴𝑥 = 𝑏 and (ii) 𝐴𝑥 = 𝑐 respectively

The left inverse of 𝐴 = ⎡⎢
⎣

1 2
2 1
3 3

⎤⎥
⎦

is 𝐴−1
𝑙𝑒𝑓𝑡 = [−4/9 5/9 1/9

5/9 −4/9 1/9] (verify!)

You can verify that

𝐴𝐴−1
𝑙𝑒𝑓𝑡𝑏 = 𝑏 (despite 𝐴𝐴−1

𝑙𝑒𝑓𝑡 ≠ 𝐼3) so 𝐴−1
𝑙𝑒𝑓𝑡𝑏 is a unique solution to (i)

𝐴𝐴−1
𝑙𝑒𝑓𝑡𝑐 ≠ 𝑐 so 𝐴−1

𝑙𝑒𝑓𝑡𝑐 is not a solution to (ii)
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The Inverse Matrix

The inverse of an arbitrary 2 × 2 matrix 𝐴 = [𝑎11 𝑎12
𝑎21 𝑎22

], if it exists, is

𝑀𝑒𝑚𝑜𝑟𝑖𝑧𝑒 𝑡ℎ𝑖𝑠! → 𝐴−1 = 1
det(𝐴) [ 𝑎22 −𝑎12

−𝑎21 𝑎11
] where det(𝐴) = 𝑎11𝑎22−𝑎12𝑎21

det(𝐴) is the determinant of the 2 × 2 matrix 𝐴
the inverse exists only if det(A) ≠ 0
If inverse of 𝐴 does not exist, we say that 𝐴 is singular
If inverse exists, we say that 𝐴 is non-singular
An alternative notation for det(𝐴) is |𝐴|
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The Inverse Matrix
The inverse of 𝐴 = [1 4

5 6] is

𝐴−1 = 1
det(𝐴) [ 6 −4

−5 1 ] = − 1
14 [ 6 −4

−5 1 ] = [−3
7

2
7

5
14 − 1

14
] .

The determinant of 𝐵 = [1 3
2 6] is det(𝐵) = 1 ⋅ 6 − 2 ⋅ 3 = 0, so 𝐵 is singular

When will det(𝐴) = 0?
if one or both rows or columns are all zero, or
if one row is a multiple of the other, or
if one column is a multiple of the other
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The Inverse Matrix
See readings for

general formula for the determinant and inverse matrix for general 𝑛 × 𝑛 matrix
algorithmic approach to calculating inverses of general 𝑛 × 𝑛 matrix
deeper understanding of determinant and inverse matrix

Generally speaking, determinant will be zero (and the inverse will not exist) if
if one or more rows or columns of the matrix are all zero
if one column is a multiple of another
if one column is exactly a linear combination of the others

If det(𝐴) ≠ 0, then 𝐴 is “full rank”, and the inverse exists
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The Inverse Matrix
A few additional results:

The inverse of a diagonal matrix diag(𝑑1, … , 𝑑𝑛) is diag(𝑑−1
1 , … 𝑑−1

𝑛 )
If 𝐴 is 𝑛 × 𝑛 and non-singular, then (𝐴−1)T = (𝐴T)−1

𝐴𝐴−1 = 𝐼𝑛 ⇒ (𝐴−1)T𝐴T = 𝐼𝑛
⇒ (𝐴−1)T𝐴T(𝐴T)−1 = 𝐼(𝐴T)−1 ⇒ (𝐴−1)T = (𝐴T)−1

𝐴 and 𝐵 are both 𝑛 × 𝑛 and non-singular, then (𝐴𝐵)−1 = 𝐵−1𝐴−1.

𝐵−1𝐴−1𝐴𝐵 = 𝐴𝐵𝐵−1𝐴−1 = 𝐼 implies 𝐵−1𝐴−1 = (𝐴𝐵)−1
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The Inverse Matrix
The inverse of a non-singular symmetric matrix is symmetric (exercise)
If 𝑋 is 𝑛 × 𝑘 with 𝑛 > 𝑘 and 𝑋𝑐 = 0𝑛×1 ⟺ 𝑐 = 0𝑘×1, then

𝑋T𝑋 is non-singular
Elaboration: If 𝑋 is 𝑛 × 𝑘 with 𝑛 > 𝑘 and 𝑐 is 𝑘 × 1, then

𝑋𝑐 =
⎡⎢⎢
⎣

𝑥11 𝑥12 ⋯ 𝑥1𝑘
𝑥21 𝑥22 ⋯ 𝑥2𝑘

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝑐1
𝑐2
⋮

𝑐𝑘

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

𝑐1𝑥11 + 𝑐2𝑥12 + ⋯ + 𝑐𝑘𝑥1𝑘
𝑐1𝑥21 + 𝑐2𝑥22 + ⋯ + 𝑐𝑘𝑥2𝑘

⋮
𝑐1𝑥𝑛1 + 𝑐2𝑥𝑛2 + ⋯ + 𝑐𝑘𝑥𝑛𝑘

⎤⎥⎥
⎦

= 𝑐1
⎡⎢⎢
⎣

𝑥11
𝑥21

⋮
𝑥𝑛1

⎤⎥⎥
⎦

+ 𝑐2
⎡⎢⎢
⎣

𝑥12
𝑥22

⋮
𝑥𝑛2

⎤⎥⎥
⎦

+ ⋯ + 𝑐𝑘
⎡⎢⎢
⎣

𝑥1𝑘
𝑥2𝑘

⋮
𝑥𝑛𝑘

⎤⎥⎥
⎦

= 𝑐1𝑋∗1 + 𝑐2𝑋∗2 + ⋯ 𝑐𝑘𝑋∗𝑘
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The Inverse Matrix
𝑐 = 0𝑘×1 ⟹ 𝑋𝑐 = 0𝑛×1 always hold. When would 𝑐 ≠ 0𝑘×1 yet 𝑋𝑐 = 0𝑛×1?

Suppose 𝑐𝑖 ≠ 0 for some 𝑖, yet 𝑋𝑐 = 0𝑛×1. Then we can write

𝑐𝑖𝑋∗𝑖 = 𝑐1𝑋∗1 + ⋯ + 𝑐𝑖−1𝑋∗(𝑖−1) + 𝑐𝑖+1𝑋∗(𝑖+1) + ⋯ + 𝑐𝑘𝑋∗𝑘
⇒ 𝑋∗𝑖 = 𝑑1𝑋∗1 + ⋯ + 𝑑𝑖−1𝑋∗(𝑖−1) + 𝑑𝑖+1𝑋∗(𝑖+1) + ⋯ + 𝑑𝑘𝑋∗𝑘 where 𝑑𝑗 = 𝑐𝑗/𝑐𝑖

if all the 𝑑𝑗 = 0, 𝑗 ≠ 𝑖, then 𝑋∗𝑖 = 0𝑛×1

if exactly one 𝑑𝑗 ≠ 0, 𝑗 ≠ 𝑖, then 𝑋∗𝑖 = 𝑑𝑗𝑋∗𝑗, i.e., one column is a multiple of another

if two or more 𝑑𝑗 ≠ 0, then 𝑋∗𝑖 is a linear combination of some of the other columns
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The Inverse Matrix
If there is a vector 𝑐 ≠ 0𝑘×1 such that 𝑋𝑐 = 0𝑛×1, we say that the columns of 𝑋
are “linearly dependent”
If 𝑋 is a data matrix (one column per variable) whose columns are “linearly
dependent”, we also say that there is “perfect collinearity” in 𝑋
If 𝑋𝑐 = 0𝑛×1 ⟺ 𝑐 = 0𝑘×1, then the columns of 𝑋 are “linearly independent”
We also say the “𝑋” has full column rank
For more on matrix rank, please see readings

If the columns of 𝑋 are linearly independent, i.e., 𝑋𝑐 = 0𝑛×1 ⟺ 𝑐 = 0𝑘×1, then

(𝑋T𝑋)−1 exists
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Session 4.4

Session 4.4 Partitioned Matrices

Partitioned or block matrices
Addition, multiplication and transpose of partitioned matrices
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Partitioned Matrices

We can partition contents of an 𝑚 × 𝑛 matrix into blocks of submatrices, e.g.,

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎦

= [𝐴11 𝐴12
𝐴21 𝐴22

]

where 𝐴11 = [1
2] , 𝐴21 = ⎡⎢

⎣

3
4
3
⎤⎥
⎦

, 𝐴12 = [3 2 6
8 2 1] and 𝐴22 = ⎡⎢

⎣

1 2 4
2 1 3
1 1 7

⎤⎥
⎦
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Partitioned Matrices

Partitioned matrices are often called block matrices

Many ways of partitioning any given matrix, e.g.,

𝐴 =
⎡
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 3 2 6
2 8 2 1
3 1 2 4
4 2 1 3
3 1 1 7

⎤
⎥
⎥
⎥
⎦

.

Main point of this section: as long as the matrices are appropriately partitioned, we can
add / multiply partitioned matrices as though the blocks were elements

Anthony Tay ECON207 Session 4 This Version: 17 Sep 2024 57 / 84



Agenda Definitions and Matrix Operations Inner Product Inverse Matrices Partitioned Matrices Vectors of RVs PCA Roadmap

Partitioned Matrices
Addition of Partitioned Matrices If 𝐴 and 𝐵 are two 𝑚 × 𝑛 matrices 𝐴 and 𝐵
partitioned as:

𝐴 =
⎡
⎢⎢
⎣

𝐴11⏟
𝑚1×𝑛1

𝐴12⏟
𝑚1×𝑛2

𝐴21⏟
𝑚2×𝑛1

𝐴22⏟
𝑚2×𝑛2

⎤
⎥⎥
⎦

and 𝐵 =
⎡
⎢⎢
⎣

𝐵11⏟
𝑚1×𝑛1

𝐵12⏟
𝑚1×𝑛2

𝐵21⏟
𝑚2×𝑛1

𝐵22⏟
𝑚2×𝑛2

⎤
⎥⎥
⎦

where 𝑛1 + 𝑛2 = 𝑛 and 𝑚1 + 𝑚2 = 𝑚, then

𝐴 + 𝐵 =
⎡
⎢⎢
⎣

𝐴11 + 𝐵11⏟⏟⏟⏟⏟
𝑚1×𝑛1

𝐴12 + 𝐵12⏟⏟⏟⏟⏟
𝑚1×𝑛2

𝐴21 + 𝐵21⏟⏟⏟⏟⏟
𝑚2×𝑛1

𝐴22 + 𝐵22⏟⏟⏟⏟⏟
𝑚2×𝑛2

⎤
⎥⎥
⎦

Anthony Tay ECON207 Session 4 This Version: 17 Sep 2024 58 / 84



Agenda Definitions and Matrix Operations Inner Product Inverse Matrices Partitioned Matrices Vectors of RVs PCA Roadmap

Partitioned Matrices
Multiplication of Partitioned Matrices. If 𝐴 and 𝐵 are 𝑚 × 𝑝 and 𝑝 × 𝑛 respectively,
and partitioned as:

𝐴 =
⎡
⎢⎢
⎣

𝐴11⏟
𝑚1×𝑝1

𝐴12⏟
𝑚1×𝑝2

𝐴21⏟
𝑚2×𝑝1

𝐴22⏟
𝑚2×𝑝2

⎤
⎥⎥
⎦

and 𝐵 =
⎡
⎢⎢
⎣

𝐵11⏟
𝑝1×𝑛1

𝐵12⏟
𝑝1×𝑛2

𝐵21⏟
𝑝2×𝑛1

𝐵22⏟
𝑝2×𝑛2

⎤
⎥⎥
⎦

then

𝐴𝐵 =
⎡
⎢⎢
⎣

𝐴11⏟
𝑚1×𝑝1

𝐴12⏟
𝑚1×𝑝2

𝐴21⏟
𝑚2×𝑝1

𝐴22⏟
𝑚2×𝑝2

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝐵11⏟
𝑝1×𝑛1

𝐵12⏟
𝑝1×𝑛2

𝐵21⏟
𝑝2×𝑛1

𝐵22⏟
𝑝2×𝑛2

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝐴11𝐵11 + 𝐴12𝐵21⏟⏟⏟⏟⏟⏟⏟
𝑚1×𝑛1

𝐴11𝐵12 + 𝐴12𝐵22⏟⏟⏟⏟⏟⏟⏟
𝑚1×𝑛2

𝐴21𝐵11 + 𝐴22𝐵21⏟⏟⏟⏟⏟⏟⏟
𝑚2×𝑛1

𝐴21𝐵12 + 𝐴22𝐵22⏟⏟⏟⏟⏟⏟⏟
𝑚2×𝑛2

⎤
⎥⎥
⎦
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Partitioned Matrices
Transposition of Partitioned Matrices: We have

𝐴 =
⎡
⎢⎢
⎣

𝐴11⏟
𝑚1×𝑛1

𝐴12⏟
𝑚1×𝑛2

𝐴21⏟
𝑚2×𝑛1

𝐴22⏟
𝑚2×𝑛2

⎤
⎥⎥
⎦

⇒ 𝐴T =
⎡
⎢⎢
⎣

𝐴T
11⏟

𝑛1×𝑚1

𝐴T
21⏟

𝑛1×𝑚2
𝐴T

12⏟
𝑛2×𝑚1

𝐴T
22⏟

𝑛2×𝑚2

⎤
⎥⎥
⎦

e.g., If 𝑋 is an 𝑛 × 𝑘 data matrix partitioned into columns, then

𝑋 =
⎡
⎢⎢
⎣

𝑥11 𝑥12 ⋯ 𝑥1𝑘
𝑥21 𝑥22 ⋯ 𝑥2𝑘

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘

⎤
⎥⎥
⎦

= [𝑋∗1 𝑋∗2 ⋯ 𝑋∗𝑘] ⟹ 𝑋T =
⎡
⎢⎢
⎣

𝑋T
∗1

𝑋T
∗2
⋮

𝑋T
∗𝑘

⎤
⎥⎥
⎦

𝑋∗𝑖 is the column vector of all 𝑁 observations of variable 𝑖
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Partitioned Matrices

𝑋𝑐 = [𝑋∗1 𝑋∗2 ⋯ 𝑋∗𝑘]
⎡⎢⎢
⎣

𝑐1
𝑐2
⋮

𝑐𝑘

⎤⎥⎥
⎦

= 𝑐1𝑋∗1 + 𝑐2𝑋∗2 + ⋯ + 𝑐𝑘𝑋∗𝑘

𝑋T𝑋 =
⎡⎢⎢
⎣

𝑋T
∗1

𝑋T
∗2
⋮

𝑋T
∗𝑘

⎤⎥⎥
⎦

[𝑋∗1 𝑋∗2 ⋯ 𝑋∗𝑘] =
⎡⎢⎢
⎣

𝑋T
∗1𝑋∗1 𝑋T

∗1𝑋∗2 ⋯ 𝑋T
∗1𝑋∗𝑘

𝑋T
∗2𝑋∗1 𝑋T

∗2𝑋∗2 ⋯ 𝑋T
∗2𝑋∗𝑘

⋮ ⋮ ⋱ ⋮
𝑋T

∗𝑘𝑋∗1 𝑋T
∗𝑘𝑋∗2 ⋯ 𝑋T

∗𝑘𝑋∗𝑘

⎤⎥⎥
⎦

=
⎡
⎢⎢⎢
⎣

∑𝑁
𝑖=1 𝑥2

𝑖1 ∑𝑁
𝑖=1 𝑥𝑖1𝑥𝑖2 ⋯ ∑𝑁

𝑖=1 𝑥𝑖1𝑥𝑖𝑘
∑𝑁

𝑖=1 𝑥𝑖2𝑥𝑖1 ∑𝑁
𝑖=1 𝑥2

𝑖2 ⋯ ∑𝑁
𝑖=1 𝑥𝑖2𝑥𝑖𝑘

⋮ ⋮ ⋱ ⋮
∑𝑁

𝑖=1 𝑥𝑖𝑘𝑥𝑖1 ∑𝑁
𝑖=1 𝑥𝑖𝑘𝑥𝑖2 ⋯ ∑𝑁

𝑖=1 𝑥2
𝑖𝑘

⎤
⎥⎥⎥
⎦
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Partitioned Matrices
If we partition the data matrix 𝑋 into rows, i.e.,

𝑋 =
⎡
⎢⎢
⎣

𝑥11 𝑥12 ⋯ 𝑥1𝑘
𝑥21 𝑥22 ⋯ 𝑥2𝑘

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑋1∗
𝑋2∗

⋮
𝑋𝑛∗

⎤
⎥⎥
⎦

where 𝑋𝑗∗ is the row vector containing
the 𝑗th obs of all variables

then 𝑋T𝑋 = [𝑋T
1∗ 𝑋T

2∗ ⋯ 𝑋T
𝑛∗]

⎡
⎢⎢
⎣

𝑋1∗
𝑋2∗

⋮
𝑋𝑛∗

⎤
⎥⎥
⎦

= 𝑋T
1∗𝑋1∗ + 𝑋T

2∗𝑥2∗ + ⋯ + 𝑋T
𝑛∗𝑋𝑛∗ =

𝑛
∑
𝑖=1

𝑋T
𝑖∗𝑋𝑖∗

⏟⏟⏟⏟⏟
sum of 𝑛 𝑘 × 𝑘 matrices
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Partitioned Matrices

If 𝐴 =
⎡
⎢⎢
⎣

𝐴11⏟
𝑚1×𝑚1

𝐴12⏟
𝑚1×𝑚2

𝐴21⏟
𝑚2×𝑚1

𝐴22⏟
𝑚2×𝑚2

⎤
⎥⎥
⎦

and non-singular, then

𝐴−1 = [
(𝐴11 − 𝐴12𝐴−1

22 𝐴21)−1 −(𝐴11 − 𝐴12𝐴−1
22 𝐴21)−1𝐴12𝐴−1

22
−𝐴−1

22 𝐴21(𝐴11 − 𝐴12𝐴−1
22 𝐴21)−1 𝐴−1

22 + 𝐴−1
22 𝐴21(𝐴11 − 𝐴12𝐴−1

22 𝐴21)−1𝐴12𝐴−1
22

]

You can verify this by direct multiplication, to show that

𝐴−1𝐴 = [ 𝐼𝑚1
0𝑚1×𝑚2

0𝑚2×𝑚1
𝐼𝑚2

]
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Partitioned Matrices

Yet another type of matrix product is the Kronecker product
Kronecker product, denoted ⊗, of an 𝑚 × 𝑛 matrix 𝐴 with a 𝑝 × 𝑞 matrix 𝐵 is the
𝑚𝑝 × 𝑛𝑞 block matrix formed by multiplying each element of 𝐴 by the entire 𝐵 matrix
For example

[𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

] ⊗ [1 0
0 1] =

⎡
⎢⎢
⎣

𝑎11 0 𝑎12 0 𝑎13 0
0 𝑎11 0 𝑎12 0 𝑎13

𝑎11 0 𝑎12 0 𝑎13 0
0 𝑎11 0 𝑎12 0 𝑎13

⎤
⎥⎥
⎦
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Session 4.5

Session 4.5 Vectors of Random Variables

Expectations
Variance-covariance matrices
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Vectors and Matrices of Random Variables
Matrix algebra helps in organizing large numbers of random variable, especially their
expectations and variances and covariances

If 𝑥 is a 𝑚 × 1 vector of random variables 𝑥 = [𝑋1 𝑋2 … 𝑋𝑚]T, then we define

𝐸(𝑥) = [𝐸(𝑋1) 𝐸(𝑋2) … 𝐸(𝑋𝑚)]T

If 𝑋 is a matrix 𝑚 × 𝑛 matrix of random variables, then

𝑋 =
⎡
⎢⎢
⎣

𝑋11 𝑋12 … 𝑋1𝑛
𝑋21 𝑋22 … 𝑋2𝑛

⋮ ⋮ ⋱ ⋮
𝑋𝑚1 𝑋𝑚2 … 𝑋𝑚𝑛

⎤
⎥⎥
⎦

⇔ 𝐸(𝑋) =
⎡
⎢⎢⎢
⎣

𝐸(𝑋11) 𝐸(𝑋12) … 𝐸(𝑋1𝑛)
𝐸(𝑋21) 𝐸(𝑋22) … 𝐸(𝑋2𝑛)

⋮ ⋮ ⋱ ⋮
𝐸(𝑋𝑚1) 𝐸(𝑋𝑚2) … 𝐸(𝑋𝑚𝑛)

⎤
⎥⎥⎥
⎦
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Vectors and Matrices of Random Variables

Let 𝑥 be a 𝑚 × 1 vector of random variables. Let

̃𝑥 = 𝑥 − 𝐸(𝑥) =
⎡
⎢
⎢
⎣

𝑋1 − 𝐸(𝑋1)
𝑋2 − 𝐸(𝑋2)

⋮
𝑋𝑚 − 𝐸(𝑋𝑚)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑋̃1
𝑋̃2
⋮

𝑋̃𝑚

⎤
⎥
⎥
⎥
⎦

Then the variance-covariance matrix of 𝑥, denoted Var(𝑥), is defined as

Var(𝑥) = 𝐸((𝑥 − 𝐸(𝑥))(𝑥 − 𝐸(𝑥))T) = 𝐸( ̃𝑥 ̃𝑥T)
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Vectors and Matrices of Random Variables

Var(𝑥) = 𝐸(𝑥̃𝑥̃T) = 𝐸((𝑥 − 𝐸[𝑥])(𝑥 − 𝐸[𝑥])T)

= 𝐸
⎡
⎢
⎢
⎣

𝑋̃2
1 𝑋̃1𝑋̃2 … 𝑋̃1𝑋̃𝑚

𝑋̃2𝑋̃1 𝑋̃2
2 … 𝑋̃2𝑋̃𝑚

⋮ ⋮ ⋱ ⋮
𝑋̃𝑚𝑋̃1 𝑋̃𝑚𝑋̃2 … 𝑋̃𝑚𝑋̃𝑚

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝐸(𝑋̃2
1) 𝐸(𝑋̃1𝑋̃2) … 𝐸(𝑋̃1𝑋̃𝑚)

𝐸(𝑋̃2𝑋̃1) 𝐸(𝑋̃2
2) … 𝐸(𝑋̃2𝑋̃𝑚)

⋮ ⋮ ⋱ ⋮
𝐸(𝑋̃𝑚𝑋̃1) 𝐸(𝑋̃𝑚𝑋̃2) … 𝐸(𝑋̃𝑚𝑋̃𝑚)

⎤
⎥
⎥
⎦

=
⎡⎢⎢
⎣

Var(𝑋1) Cov(𝑋1, 𝑋2) … Cov(𝑋1, 𝑋𝑚)
Cov(𝑋1, 𝑋2) Var(𝑋2) … Cov(𝑋2, 𝑋𝑚)

⋮ ⋮ ⋱ ⋮
Cov(𝑋1, 𝑋𝑚) Cov(𝑋2, 𝑋𝑚) … Var(𝑋𝑚)

⎤⎥⎥
⎦
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Vectors and Matrices of Random Variables
Recall that if 𝑋 is a (univariate) random variable, then

𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏
Var(𝑎𝑋 + 𝑏) = 𝑎2Var(𝑋)
Var(𝑋) = 𝐸(𝑋2) − 𝐸(𝑋)2

We have matrix analogues of these results: Suppose 𝑥 is an 𝑚 × 1 vector of random variables,
𝐴 = (𝑎𝑖𝑗)𝑘𝑚 is a 𝑘 × 𝑚 matrix of constants and 𝑏 is a 𝑘 × 1 vector of constants. Then

𝐸(𝐴𝑥 + 𝑏) = 𝐴𝐸(𝑥) + 𝑏
Var(𝐴𝑥 + 𝑏) = 𝐴Var(𝑥)𝐴T

Var(𝑥) = 𝐸(𝑥𝑥T) − 𝐸(𝑥)𝐸(𝑥)T
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Vectors and Matrices of Random Variables
Proof of 𝐸(𝐴𝑥 + 𝑏) = 𝐴𝐸(𝑥) + 𝑏:

The 𝑖th element of the 𝑘 × 1 vector 𝐴𝑥 + 𝑏 is ∑𝑚
𝑗=1(𝑎𝑖𝑗𝑋𝑗 + 𝑏𝑖). The expectation of this term is

𝐸 (
𝑚

∑
𝑗=1

(𝑎𝑖𝑗𝑋𝑗 + 𝑏𝑖)) =
𝑚

∑
𝑗=1

𝑎𝑖𝑗𝐸(𝑋𝑗) + 𝑏𝑖

which is the 𝑖th element of the vector 𝐴𝐸(𝑥) + 𝑏.

Proof of Var(𝐴𝑥 + 𝑏) = 𝐴Var(𝑥)𝐴T:

Since 𝐴𝑥 + 𝑏 − 𝐸(𝐴𝑥 + 𝑏) = 𝐴(𝑥 − 𝐸(𝑥)) = 𝐴𝑥̃, we have

Var(𝐴𝑥 + 𝑏) = 𝐸((𝐴𝑥̃)(𝐴𝑥̃)T) = 𝐸(𝐴𝑥̃𝑥̃T𝐴T) = 𝐴𝐸(𝑥̃𝑥̃T)𝐴T

= 𝐴 Var(𝑥)𝐴T .

Proof of Var(𝑥) = 𝐸(𝑥𝑥T) − 𝐸(𝑥)𝐸(𝑥)T: Exercise!
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Vectors and Matrices of Random Variables
Let 𝑥 be 𝑚 × 1 vector of random variables, 𝑐 be 𝑚 × 1 non-zero vector of constants

Obviously the variance-covariance matrix of 𝑥 is symmetric

Consider the linear combination 𝑐T𝑥 (this is a now a single random variable). We have
Var(𝑐T𝑥) = 𝑐TVar(𝑥)𝑐 ≥ 0 for all 𝑐 ≠ 0𝑚×1

Var(𝑐T𝑥) cannot be negative since it is a variance

If Var(𝑐T𝑥) = 0 then either
one of the random variables is not actually random, or
one of the random variables is just a multiple of the other
one of the random variables is a linear combination of two or more of the other
random variables
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Digression on Symmetric Matrices
A 𝑚 × 𝑚 symmetric (and square) matrix 𝐴 is positive definite if

𝑐T𝐴𝑐 > 0 for all 𝑐 ≠ 0𝑚×1

It is positive semidefinite if 𝑐T𝐴𝑐 ≥ 0 for all 𝑐 ≠ 0𝑚×1. Similar definitions for negative
definiteness and negative semidefiniteness

Variance covariance matrices Var(𝑥) are positive semidefinite

If the random variables in 𝑥 are not linearly dependent, then Var(𝑥) is positive definite

Another example: suppose the columns of a 𝑛 × 𝑘 data matrix 𝑋 are linearly
independent, i.e.,

𝑋𝑐 ≠ 0𝑛×1 for all 𝑐 ≠ 0𝑘×1
Then 𝑐T𝑋T𝑋𝑐 = (𝑋𝑐)T𝑋𝑐 > 0 for all 𝑐 ≠ 0𝑘×1, i.e., 𝑋T𝑋 is positive definite
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Session 4.6

Session 4.6 Principal Component Analysis

Eigendecomposition of symmetric matrices, without proofs
Application to Principal Component Analysis

No discussion of eigenvalues or eigenvectors, see readings if interested
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Eigendecomposition of Symmetric Matrices
Another very important fact about symmetric matrices (Eigendecomposition)

Every 𝑘 × 𝑘 symmetric matrix 𝐴 can be decomposed in the following way

𝐴 = 𝑄Λ𝑄T = [𝑞1 𝑞2 … 𝑞𝑘]
⎡
⎢⎢
⎣

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑘

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑞T
1

𝑞T
2
⋮

𝑞T
𝑘

⎤
⎥⎥
⎦

=
𝑘

∑
𝑖=1

𝜆𝑖𝑞𝑖𝑞T
𝑖

𝜆𝑖, 𝑖 = 1, … , 𝑘 are real numbers called eigenvalues (usually ranked 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑘)

The 𝑘 × 1 vectors 𝑞𝑖, 𝑖 = 1, … , 𝑘 are the corresponding eigenvectors

𝑄 satisfies the property 𝑄T𝑄 = 𝐼𝑘

(see BPT Chapter 10)
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Sample Variance-Covariance Matrix
Let 𝑋 be a 𝑛 × 𝑘 data matrix, each column contains 𝑛 observations of some variable,
mean removed. Then

𝑋 =
⎡
⎢⎢
⎣

𝑥11 − 𝑥1 𝑥12 − 𝑥2 ⋯ 𝑥1𝑘 − 𝑥𝑘
𝑥21 − 𝑥1 𝑥22 − 𝑥2 ⋯ 𝑥2𝑘 − 𝑥𝑘

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 − 𝑥1 𝑥𝑛2 − 𝑥2 ⋯ 𝑥𝑛𝑘 − 𝑥𝑘

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

̃𝑥11 ̃𝑥12 ⋯ ̃𝑥1𝑘
̃𝑥21 ̃𝑥22 ⋯ ̃𝑥2𝑘
⋮ ⋮ ⋱ ⋮
̃𝑥𝑛1 ̃𝑥𝑛2 ⋯ ̃𝑥𝑛𝑘

⎤
⎥⎥
⎦

and 1
𝑛 − 1𝑋T𝑋 is the symmetric sample variance-covariance matrix

1
𝑛 − 1𝑋T𝑋 =

⎡
⎢⎢
⎣

1
𝑛−1 ∑𝑛

𝑖=1 𝑥̃2
𝑖1

1
𝑛−1 ∑𝑛

𝑖=1 𝑥̃𝑖1𝑥̃𝑖2 ⋯ 1
𝑛−1 ∑𝑛

𝑖=1 𝑥̃𝑖1𝑥̃𝑖𝑘
1

𝑛−1 ∑𝑛
𝑖=1 𝑥̃𝑖2𝑥̃𝑖1

1
𝑛−1 ∑𝑛

𝑖=1 𝑥̃2
𝑖2 ⋯ 1

𝑛−1 ∑𝑛
𝑖=1 𝑥̃𝑖2𝑥̃𝑖𝑘

⋮ ⋮ ⋱ ⋮
1

𝑛−1 ∑𝑛
𝑖=1 𝑥̃𝑖𝑘𝑥̃𝑖1

1
𝑛−1 ∑𝑛

𝑖=1 𝑥̃𝑖𝑘𝑥̃𝑖2 ⋯ 1
𝑛−1 ∑𝑛

𝑖=1 𝑥̃2
𝑖𝑘

⎤
⎥⎥
⎦
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Principal Components
Apply eigendecomposition to the sample variance-covariance matrix

1
𝑛 − 1𝑋T𝑋 = 𝑄Λ𝑄T

Construct the following data matrix
𝑌 = 𝑋𝑄 = 𝑋 [𝑞1 𝑞2 … 𝑞𝑛] = [𝑋𝑞1 𝑋𝑞2 … 𝑋𝑞𝑛]

Each 𝑛 × 1 vector 𝑋𝑞𝑖, 𝑖 = 1, … , 𝑘 is an “index variable” formed by a linear
combination of the 𝑘 𝑋 variables

𝑋𝑞𝑖 = [𝑋∗1 𝑋∗2 ⋯ 𝑋∗𝑘]
⎡
⎢⎢
⎣

𝑞1𝑖
𝑞2𝑖
⋮

𝑞𝑘𝑖

⎤
⎥⎥
⎦

= 𝑞1𝑖𝑋∗1 + 𝑞2𝑖𝑋∗2 + ⋯ + 𝑞𝑘𝑖𝑋∗𝑘
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Principal Component Analysis
The sample variance-covariance matrix of 𝑌 is

1
𝑛 − 1𝑌 T𝑌 = 1

𝑛 − 1𝑄T𝑋T𝑋𝑄 = 𝑄T ( 1
𝑛 − 1𝑋T𝑋) 𝑄 = 𝑄T𝑄Λ𝑄T𝑄 = Λ

That is, the 𝑛 × 𝑘 matrix 𝑌 contain observations of 𝑘 uncorrelated variables
first column has obs. of the first index variable, which has the greatest variance
second column has obs. of the second index variable, which has the second highest
variance

These index variables are called principal components

Often first two or three indexes account for most of the variance in the data –
dimension reduction
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Principal Component Analysis
causes-of-death-by-state.csv

51 × 14 data matrix
age-adjusted number of deaths per 100,000, all races, both sexes, all ages, over the
period 2016-2020
across the 51 US states plus District of Columbia (rows)
14 causes of death (columns): accidents & adverse effects (accident), Alzheimer’s
disease (Alzheimers), cancer, cerebrovascular diseases (cerebrovascular), chronic lower
respiratory disease (respiratory), chronic liver disease & cirrhosis (liver), diabetes mellitus
(diabetes), heart disease (heart), homicide & legal intervention (homicide), influenza,
kidney disease - nephritis & nephrosis (kidney), pneumonia, septicemia, suicide &
self-inflicted injury (suicide).

Qn: How do states differ by cause of death?
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Principal Component Analysis
library(tidyverse)
library(ggrepel)
df <- read.csv("data/causes-of-death-by-state.csv")
row.names(df) <- df[,1]
df <- df[,-1]
head(df, 4) # Show data for first four states

Accident Alzheimers Cancer Cerebrovascular Respiratory Liver Diabetes
Alabama 55.2 46.1 166.9 51.8 56.0 13.6 20.5
Alaska 62.3 26.0 146.8 37.1 35.0 16.7 19.7
Arizona 58.6 33.8 132.3 30.9 40.2 14.9 23.9
Arkansas 51.6 40.9 169.7 42.9 61.6 12.7 30.8

Heart Homicide Influenza Kidney Pneumonia Septicemia Suicide
Alabama 225.1 12.9 1.5 16.9 17.0 17.0 16.2
Alaska 136.1 9.4 2.1 10.0 8.2 8.3 26.5
Arizona 139.1 6.7 1.6 7.1 9.4 4.8 18.2
Arkansas 222.2 10.4 2.2 18.6 15.7 12.9 18.9
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Principal Component Analysis

# Importance of each PC
dfs <- scale(df, scale=FALSE) # remove the mean but don't standardize
dfpca1 <- prcomp(dfs)
summary(dfpca1)

Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 32.8587 12.5414 9.57876 7.44281 6.38255 4.53854 3.63309
Proportion of Variance 0.7258 0.1057 0.06168 0.03724 0.02738 0.01385 0.00887
Cumulative Proportion 0.7258 0.8315 0.89319 0.93043 0.95781 0.97166 0.98053

PC8 PC9 PC10 PC11 PC12 PC13 PC14
Standard deviation 2.89666 2.50515 2.28355 2.17946 1.54667 1.37289 0.24006
Proportion of Variance 0.00564 0.00422 0.00351 0.00319 0.00161 0.00127 0.00004
Cumulative Proportion 0.98617 0.99039 0.99389 0.99709 0.99869 0.99996 1.00000
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Principal Component Analysis

# Cause of Death Loading for First Two PCs

pc1and2 <- as.data.frame(dfpca1$x[,1:2]) # Collect first two PCs into a data fram

loadings1and2 <- data.frame(xstart = 0, # A data frame containing the
ystart = 0, # loadings (weights) placed on each
PC1 = dfpca1$rotation[,1], # cause of death in the first two
PC2 = dfpca1$rotation[,2]) # principal components

p1 <- ggplot(loadings1and2,
aes(x = xstart, y = ystart, xend = PC1, yend = PC2)) +

geom_segment(arrow = arrow(length=unit(0.1, "inches"))) + ylab("PC2") + xlab("PC1") +
annotate("text", x=loadings1and2$PC1, y=loadings1and2$PC2+0.04,

label=rownames(loadings1and2), size=4) +
theme_bw()
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Principal Component Analysis
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Principal Component Analysis
# Each States PC1 and PC2 scores
ggplot(as.data.frame(pc1and2), aes(PC1, PC2, label = rownames(pc1and2))) +
geom_point() + geom_text_repel(size=4, box.padding = 0.1) + theme_bw()
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Roadmap

(Previous) Session 1: Statistics Review
(Previous) Session 2: Simple Linear Regression
(Previous) Session 3: Estimator Standard Errors; Multiple Linear Regression
This Session 4: Matrix Algebra
Next Session 5: OLS using Matrix Algebra
Session 6: Hypothesis Testing
Session 7: Prediction
Session 8: Instrumental Variable Regression
Session 9: Logistic and Other Regressions
Session 10: Panel Data Regressions
Session 11: Introduction to Time Series
Session 12: Time Series Regressions
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