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[ ]

Session 4

@ Introduction to Matrix Algebra
o Different types of matrices

Matrix operations

Partitioned matrices
e Vectors and matrices of random variables

e Principal Component Analysis
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Definitions and Matrix Operations
©00000000000000000000

Matrix Definition

Session 4.1
@ Matrix Definitions and Operations
e Types of matrices, notation

o Additions, scalar multiplications, Hadamard product, matrix multiplication,
transposition

ECON207 Session 4 This Version: 17 Sep 2024 3/84



Agenda  Definitions and Matrix Operations

0O®0000000000000000000

Matrix Definition

a1 Q2 A1y
a a a
FOWS 21 22 on
617711 (17712 CLﬂQ?l
columns

Other notational conventions:

® (@;)pmxn refers to a m x n matrix with (4, j)th element a,;

o (A),; refers to the (4, j)th element of the matrix A

Anthony Tay

Matrix with m rows, n columns
@ Order or Dimension m X n

ECON207 Session 4

If m = n: square matrix

If m > 1 and n = 1: column vector
If m=1and n > 1: row vector

If m =1 and n = 1: scalar

a;; is the (7, j)th element or term of the matrix

This Version: 17 Sep 2024
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Agenda  Definitions and Matrix Operations  Inner
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Matrix Operations (Add Hadamard Prod, Scalar Mult.)

Given two matrices A and B of the same dimensions:

@ Equality: A=B <« (A);;=(B);;foralli=1,....m;j=1,...,n
@ Addition: (A + B);; = (A);; + (B);; foralli=1,...,m; j=1,...,n
e Matrix addition is element-by-element addition

@ Hadamard Product: (A© B)ij = <A>ij(B>ij

e Hadamard Product is element-by-element multiplication
o Alternative notations for Hadamard Product: Ao B, Ax B

For any matrix A and any scalar o € R

@ Scalar Multiplication: (ad);; = (Aa);; = a(A);; foralli=1,....m;j=1,..,n
ECON207 Session 4 This Version: 17 Sep 2024
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Matrix Operations (Add, Hadamard Prod, Scalar Mult.)

bll b12 b13

Examples: If A = [all @12 al?’] and B = {
ba1 byy bog

, then
Qo1 Qo Qg3

o ALDB— [au +011 Q12 +b1p ag3+ b13}

a1 +bgy  agg +byy  agg + by

e AOB= {anbn ay2by9 a13b13]
Ag1b91  g9bag  ag3bag

aa aa aa
@ oA = Ao = 11 12 13
Qg1 Qoo Oéa23

e A—B=A+(-1)B= [an—bu ayp — b ay3 —by3
A9 —byy g9 — gy g3 — bog
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Matrix Operations (Add, Hadamard Prod, Scalar Mult.)

The following should be obvious:
e (A+B)+C=A+(B+C), (AOB)0C=A0(B060)
e A+B=B+A, AOB=B0A
e AO(B+C)=A0B+AOGC
o a(A+B)=aA+aB, (a+ 5)A=aA+ pA

ECON207 Session 4 This Version: 17 Sep 2024 7/84



Definitions and Matrix Operations
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Matrix Operations (Transposition)

@ Matrix Transpose of A, denoted AT, is defined by (A™),;; = A},

a a a a;; Qg
Qg1 Q22 Q23
a3z Qa3
Ty
if = h T
eg., It T = |Ty , then r* = [ml To $3]
T3
. T
We often write column vectors as x = [a:l Ty xn] to save space

Sometimes a matrix transpose is written as A’ instead of AT

8/84



Definitions and Matrix Operations
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Matrix Operations (Transposition)

Clearly
o (A+B)T=AT+ BT
o (AoB)T=ATo BT
o (aA)t = aA”
o (AT =4

Definition: A square matrix is symmetric if (4);; = (A);;, ie, AT = A

1 3 2 1 3 2
eg., |3 4 6| issymmetric, |7 4 6] is not

2 6 3 2 6 3
ECON207 Session 4 This Version: 17 Sep 2024 9/84



enda  Definitions and Matrix Operations |rm r P
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Matrix Operations (Matrix Multiplication)

Matrix Multiplication/Product: For any m x n matrix A and n X p matrix B, we have

n
B 3 = E alkbkj .
k=1

i.e., (i,7)th element of AB is the sum of the product of the elements of the ith row of
A with the corresponding elements in the jth column of B

For example,
o (AB)y; = Zzzl a1bgr = a11b11 + @by + aygbgy + -+ aq,,b
° (AB)y3 = Zzzl Aobrs = Ag1b13 + Ggobag + Aggbsg + - + agy, b3

ECON207 Session 4 This Version: 17 Sep 2024 10/84



nda Definitions and Matrix Operations |
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Matrix Operations

For the product of a 3 x 3 matrix and a 3 X 2 matrix, we have

aj; Qiz ag bi1| bis ‘allbll +ai3byy +ay3bs | @
b b =
Gy, Ggy Gos b21 b22 . .
L Q37 Qg9 Q33 | L 31 32 | L o °
| 16y, [b]] 323 b bio+ a15bgg + aq3bss |]
11 Q12 A13 11 12 k=1 @1k%k1 | @11012 T Q12022 T A13032
b b =
a/21 a22 a23 b21 b22 [ ] [ )
L azy azp agzz | L731 32 || L i ° —
[ a a a3 ] T 7 i 3 b 3 bl
11 %12 Qi3 bi1| big 21 @1kbr1 D o1 G1kbr2
Qg1 Ggp Qg3 221 222 = ‘a21b11 + ag9bgq + ag3bsy ‘ °
L @31 @3z agz | L[731] 7320 | i i ]

and so on.
ECON207 Session 4 This Version: 17 Sep 2024 11/84



Agenda  Definitions and Matrix Operations In
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Matrix Operations (Matrix Multiplication)

5-4+1-6 5-7+1-9

2 8
4 7 1 3 4
If A= 30,3—[6 g}andC—[ng)]then
5 1
2 8 47 2:44+8-6 2-7+8-9 56 &6
AB= 1|3 O] [6 9]:{3-4—1—0-6 3-74+0-9 :{12 21].
5 1 26 44

@ A and B “conformable” for the product AB requires no.cols(A) = no.rows(B)
@ Even if A and B are conformable for AB, the product BA might not be possible

@ Even if AB and BA are possible, they may not be equal (might not even be the
same dimensions)

ECON207 Session 4 This Version: 17 Sep 2024 12/84



Matrix Operation (Matrix Multiplication)

A = matrix(c(2,8,3,0,5,1), B = matrix(c(4,7,6,9), C = matrix(c(1,3,4,6,2,5),
nrow=3, byrow=T) nrow=2, byrow=T) nrow=2, byrow=T)
A B C
[,11 [,2] [,11 [,2] [,11 [,2]1 [,3]
[1,] 2 8 [1,] 4 7 [1,] 1 3 4
[2,] 3 0 [2,] 6 9 [2,] 6 2 5
[3,1] 5 1
A %x% B A %x% C
[,11 [,2] [,11 [,21 [,3]
[1,] 56 86 [1,] 50 22 48
2,1 12 21 [2,] 3 9 12
[3,] 26 44 [3,] 11 17 25
B %*% A C %*h A
Error in B %*J, A: non-conformable arguments [,11 [,2]

(1,1 31 12
[2,1 43 53

ECON207 Session 4 This Version: 17 Sep 2024 13/84



Agenda Definitions and Matrix Operations Inner
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Matrix Operations (Matrix Multiplication)

Easy to show
o (AB)C =A(BC)if Aismxn, BisnxpandCispXgq
e AABB+C)=AB+ACifAism xn, Band C aren X p
e (A+B)C=AC+BCifAand Barem xnand Cisn Xp

Proof of (AB)C = A(BC):

=3 (4),, (Z(B»k(c)kj) = 3 (A4),,(BC),, = (A(BCO)),,

ECON207 Session 4 This Version: 17 Sep 2024 14 /84



genda Definitions and Matrix Operations Inner Pr

000000000000 e00000000

Matrix Operations

In some respect, matrix multiplication behaves quite differently from multiplication of
numbers:

SN A matrix with all elements 0 is the “zero matrix” 0,,, .
(9 4] [—2 4 00 Sometimes subscripts left out
(] =
1 2111 =2 00 @ A0=0

) @ 0B=0
P 1 b]ll b]:lo 0] @ But AB =0 does not imply A=0or B=0
(]

—3 -1 |-3 -1 00
Possible for A # 0, yet A2 = AA =0

ECON207 Session 4 This Version: 17 Sep 2024 15/84



Agenda  Definitions and Matrix Operations  Inner P
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Matrix Operations (I\/Iatrix Multiplication)

It is possible for Ab = Ac, yet b # ¢

b o)== L

There is an important special case where Ab = Ac = b=rc¢

e.g.,

We'll come to it later

Important to understand Ab = Ac does not imply b = ¢ in general

ECON207 Session 4 This Version: 17 Sep 2024 16 /84



Relationship between Matrix Multiplication and Transpose

Suppose A is m x n and B isn X p, then
(AB)T = BTAT
Proof: We have

ECON207 Session 4 This Version: 17 Sep 2024 17/84



Agenda Definitions and Matrix Operations Inn
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The ldentity Matrix

The identity matrix I, is the n X n matrix such that

1 ifi=j o
(In)ij:{o ifi#j’ for i,7=1,...,n
That is,
10 - 00
01 - 00
I, = : :
00 - 10
00 - 01

If Aism X n then
AL =A and [ A=A

ECON207 Session 4 This Version: 17 Sep 2024 18/84



a Definitions and Matrix Operations Irm»r 2
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Diagonal, Upper and Lower Triangular Matrices

The identity matrix is an example of a diagonal matrix
A diagonal matrix D is a square matrix such that (D),;; = 0 for all i # j

o It doesn't matter what the diagonal elements (D),;;

j; are

e Diagonal matrices are often written diag(d,, d,, ..., d,,)

@ The identity matrix is diag(1,1,...,1)
A lower triangular matrix L is a square matrix such that (L);; = 0 for all i < j
An upper triangular matrix U is a square matrix such that (U),; = 0 for all i > j

Anthony Tay ECON207 Session 4 This Version: 17 Sep 2024
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Agenda Definitions and Matrix Operations Inn
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Diagonal, Upper and Lower Triangular Matrices

diagonal lower triangular upper triangular
* 0 0 0 * 0 0 0 *
0 = 0 0 * % 00 0
D = L=|: : U=
0 0 * 0 * <% 0 0 0 *
0 0 0 = * N 00 0

where * means any value, including 0

ECON207 Session 4 This Version: 17 Sep 2024 20/84



Agenda  Definitions and Matrix Operations
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Important examples of matrix products
Example: The general linear system of equations

a1y + ay9Ty + -+ ay T, = by

a21:131 + a22x2 + + a/2nxn — b2

Am1Ty + AmaTo +oe e bm

;. Qg ... Gy xq by
) a a e @ T b
can be written as 21 2,2 2n ,2 = ,2 or Az =0
aml am2 amn xn bm

Often the problem is: given A and b, want to find = so that equation holds

ECON207 Session 4 This Version: 17 Sep 2024 21/84



Important examples of matrix products

If o =[x, zy - xn]T, then

L1
T n
. 2| _ 2
Inner Product: 'z =[x, oy - z,] | 2| = g T
: i=1
xn
The norm of a vector x is defined as ||z|| = VaTx
2 1Ty - Xy
Ty 1 172 1Tn
Outer Product: zat = |"2| [x; zy - x,]= "2 72 2on
: :
.I'n :C'nai'l ZL’nZCQ o SCn

ECON207 Session 4 This Version: 17 Sep 2024 22 /84



Agenda Definitions and Matrix Operations |
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Important examples of matrix products

T
_ _ T o n n
Ifz= [z @y -~ z,] ,and A= (a;),xn, then " Az =37 Dy LT,
For the case when n = 3:
- @11 Q19 Q33 Ty
z’ Az = [331 To xs} Qg1 Qg9 Q23| |To
a31 A3z Qaz3] LT3
Zq

= [T1a1; + To09; +X3a3; T1G19 + Toloy + T30z X013 + Tooz + Tza33] |2
T3

_ .2 2 2
=z7a11 + T5095 + T3a33 + T1To(A15 + agq) + T1T5(a13 + agy) + Tox3(as3 + ass)

When A is symmetric, T Az is called a quadratic form

ECON207 Session 4 This Version: 17 Sep 2024 23 /84



Inner Product |
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Session 4.2

Session 4.2 Comments on the Inner Product
@ Geometric understanding of the inner product

@ Norms and angles between vectors

ECON207 Session 4 This Version: 17 Sep 2024 24 /84



Inner Product |
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Comments on the Inner Product

In some contexts, a “vector” is simply an ordered list of numbers with no shape

@ e.g., an general n-vector z = (x1,Zq, ..., T,,)
@ e.g., a specific 4-vector (1,5, 3,2)

Inner product / Scalar Product / Dot Product u - v or (u,v)

n
U V= (Ug, Ugy eeey Uy )+ (U], Vo ooy U,) = UV F UgUy + -+ + w0, = g u;v;
i—1

In matrix algebra, we organize vectors into rows or columns

If w and v are columns vectors, the inner product is uTw

ECON207 Session 4 This Version: 17 Sep 2024 25 /84



Comments on the Inner Product

We can think of vectors as points in space
e.g. for vectors in R? such as u = (uy,us) = (—1,1), v = (v, v9) = (2,2)

@ The norm of v is the distance from

3 O =(0,0)tov=1(2,2)
? |v] = \/v}+v3=V2
B
y 1 I » (Pythagoras's Theorem)
u o @ distance from u to v is
o
o} V(g —up)2 + (vg —uy)? = |v—ul
-1 — \/E
-2 0 2 4
X

ECON207 Session 4 This Version: 17 Sep 2024 26 /84



Inner Product
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Comments on the Inner Product

Anthony Tay

Can view a vector v as an “arrow” from O to v

@ |v| is length of arrow representing v
@ But use “norm” instead of “length”

Scalar Multiplication av

@ Stretches a vector if |a| > 1)

@ Shrinks a vector if |a| < 1

@ Returns the vector to the origin if « =0
4 @ flips the direction of the vector if a < 0

The vector “UH has unit norm
v

ECON207 Session 4 This Version: 17 Sep 2024 27 /84



Inner Product
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Comments on the Inner Product

Vector Addition:
u+v

@ u + v is the diagonal, starting at O, of
the parallelogram formed by w and v

@ When thinking of vectors as “arrows”, the
starting position is irrelevant

@ The black arrow v and the blue arrow are
(o) the same vector

) 0 2 4 @ The red arrow u and the red arrow are
the same vector

ECON207 Session 4 This Version: 17 Sep 2024 28 /84



Inner Product
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Comments on the Inner Product

, @ Since
ut (v—u)=wv
2 v-u the vector v — u is represented by the
y v arrow from u to v
' u @ It is also represented by the arrow from
0 the origin to the point
(0]
-1 (37 1) = (2a 2) - (_17 1)
-2 0 2 4

ECON207 Session 4 This Version: 17 Sep 2024 29 /84



Inner Product In
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Comments on the Inner Product

eg, w=(—2,1)and z = (3,2) Interpretation of the dot product of two
different vectors:

If 6 is the angle formed at the origin by two

2 W vectors w and z, then
z
y 3 w -z = |lw]||z] cosd

0 ie., w .
— « — = cos 0
lwll 2]

-2

-2 0 2 4 . . .
X i.e., the dot product of two unit vectors gives

the cosine of the angle formed by the two
vectors at the origin

ECON207 Session 4 This Version: 17 Sep 2024 30/84



ations  Inner Product In
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Comments on the Inner Product
Proof using the Cosine Rule:
|z = wl?* = [121* + [w]* — 22| w] cos 0
(NB: Pythagoras's Theorem is when 6 = /2, so cos ) = 0)
Converting to inner products (we'll take the vectors to be column vectors)
(z—w)T(z—w) =T —wh)(z —w)
=22+ whw—2Tw—w'z
= 2T+ wtw— 2wz (since 2Tw = wTz2)

Comparing the two, we have w - z = ||z| |w]|| cos 6

ECON207 Session 4 This Version: 17 Sep 2024 31/84



s Inner Product

r a
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Comments on the Inner Product

The Cosine Rule also gives the Triangle Inequality

Since —1 < cosf < 1, we have
lz = wl? = |22 + [w]* — 22| Jw] cos &
< |2)* + [w]* + 2 2] |w]
= (2 + wl)?
|z —w] < 2] + [w]

Length of one side of a triangle is less than the sum of the lengths of the other two sides

ECON207 Session 4 This Version: 17 Sep 2024 32/84



Inner Product
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Comments on the Inner Product

All of this extends to n-vectors

T
o lfx =[x, xy - x,] , then
o |z| = ZZ (27 = VaTz is the "distance” from the origin to x

o |z —yll= \/Z@ 1 (w; —y;)? is the “distance” between x and y

But what is “distance” in n-dimensions? We can show ||z — y|| satisfies the three main
properies of distance:

@ it is non-negative (obvious)

@ it is symmetric, i.e., distance between x and y is the same as distance between y
and z (also obvious)

@ it satisfies the triangle inequality

ECON207 Session 4 This Version: 17 Sep 2024 33/84



ations  Inner Product In
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Comments on the Inner Product

The key is the Cauchy-Schwarz Inequality: For any two n x 1 vectors u and v, we
have

o] < fufflv]
Equality holds only if u = awv
Proof:

o Ifu=0,,; orv=_0,,,, then the CS-Inequality holds trivially with equality
@ u = aw, then

[utv| = [(av) o] = [affv]*  and  [ulv] = |av]|v] = |al|v]?
so the CS-Inequality holds (with equality)

ECON207 Session 4 This Version: 17 Sep 2024 34 /84
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15 Inner Product

Comments on the Inner Product

e If u # aw for any a. Then

0 < (u—av)T(u—av) = uTu—avtu—auTv+a?vTv = uTu—20uTv+a?vTv

This inequality holds for all . At the particular values o = uv /v v, we have
T
0<uTu—QMuTU+<—v v=ulu—
v (vTw)?
= (uTu)(vTv) < (uTv)?
Taking square roots gives the result |uv| < |ul||v|

This Version: 17 Sep 2024 35/84
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ations  Inner Product In
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Comments on the Inner Product

Cauchy-Schwarz Inequality implies the Triangle inequality
Let z, y, 2z be any three n X 1 vectors and let u = x —y and v =y — z. Then
lz —2|* = |z —y +y — 2|
=(x—y+y—2)e—y+y—=2
=(x—y)'@—y +2@-y)(y—2) +y—2"y—2)
<z —yl? +lly — 21 + 2/(z — y) " (y — 2)]|
<lz—yl? +ly — 21> + 20z — yl |y — 2 = (= — 9l + |y — 2I)?

Taking square roots gives |z — z|| < ||z — y| + |y — 2|

ECON207 Session 4 This Version: 17 Sep 2024 36 /84



Inner Product
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Comments on the Inner Product

@ We can treat |z — yl|| as “distance” from x to y even in n-dimensions
e even though we can't literally measure this distance with a ruler

@ We can treat ||z| as “distance” from origin to = (“norm")

Furthermore, since |z'y| < ||z||y|| implies —1 < ”ziﬁ;” <1

We define the “angle” between x and y to be # such that
Ty
[y

If 2Ty = 0 we say that = and y are orthogonal (general n-dimensional version of
“perpendicular”)

cos 0 =

ECON207 Session 4 This Version: 17 Sep 2024 37/84



Inverse Matrices
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Session 4.3

Session 4.3 Inverse Matrices
o Left-, right-, and “two-sided” inverse matrix
@ Properties of the inverse matrix
@ Determinants

Less emphasis on methods for computing inverses and determinants

ECON207 Session 4 This Version: 17 Sep 2024 38/84



Inverse Matrices
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The Inverse Matrix

Let A be an m x n matrix
@ The n X m matrix B is a left-inverse of A if BA =1,

@ The n x m matrix C is a right-inverse of A if AC =1,,.

1 1
—1 0.2 0.4
Let A = Z é and B = { 9 _02 _0.4]

B is a left-inverse of A (or A is the right-inverse of B) since

2 —-02 —-04 21 2—-04—-16 2-—-02-038 01

pa- |
4 2

102 0.4] [1 1} - l—1+0.4+1.6 —1+0.2+O.8] B {1 0]

ECON207 Session 4 This Version: 17 Sep 2024 39/84



Inverse Matrices
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The Inverse Matrix

1 0 0
B is not a right-inverse of A since AB= |0 0.2 04
0 04 08

In fact A has no right-inverse

11 e b e 1 00
Suppose AC = |2 1 Ll . f}: 0 1 0] then we have

4 2 0 0

—_

2b+e=1 and 4b+2e=0

which is a contradiction

40 /84



Agenda Definitior d Matrix Operations Inner P c Inverse Matrices

P
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The Inverse Matrix

A has left- and right-inverse only if it is square, and they will be the same matrix, i.e.,

o If Aisn xn, and BA= AC = I,, then it must be that B = C
BA=1, = BAC=1,C = Bl,=C = B=C

Then B = C is the “two-sided inverse”, or simply the inverse of A, denoted A~!

The inverse of a n X n matrix A, if it exists, is the unique matrix A~ such that

ATA=1 = AA!

ECON207 Session 4 This Version: 17 Sep 2024 41/84



Inverse Matrices

a
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The Inverse Matrix

We emphasize
o A has a (two-sided) inverse only if it is square
@ But not all square matrices have an inverse

Examples:

2 4

3., 1[4 -3
A_{ ].SA__al_Q 1]

Verify by direct multiplication:
114 =3|]|1
-1 _ -
=54 T

Anthony Tay

ECON207 Session 4
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Inverse Matrices

a
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The Inverse Matrix

) 1 2
The matrix A = {2 4

1 2| |la b |a+2c b+2d| |1 O
2 4| |lc d|  |2a+4c 2b+4d| |0 1

This implies @ + 2¢ = 1 but 2a + 4¢ = 2(a + 2¢) = 0 which gives a contradiction

] has no inverse

Proof: Suppose

ECON207 Session 4 This Version: 17 Sep 2024 43 /84



Inverse Matrices 2
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The Inverse Matrix

Consider the system of n equations in n unknowns

1121 + A19%g + 0+ a7, = 0y aj; Gyy - ay,] [24 by
A91T1 + Qoo + -+ + Ag, T, = by Ayy A3y .. @ x b
nifn = , | 921 OG22 2n | (T2 Z | %2 o Ax=b
p1 Qp2 - Gppl Lz, b,,

Up1T1 + Qpolo + -+ Ay Ty = bn
If A has an inverse, then the unique solution to this system is

Ar=b < xz=A"1b

e Ar=b=>AAr=A"b=2x=A4"1
er=A1b= Axr=AA b =bsox = A 1bis indeed a solution

ECON207 Session 4 This Version: 17 Sep 2024 44 /84



Inverse Matrices Partit
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The Inverse Matrix

Example: consider the system

T+ 3z, =1 1 3] [x,
or
2, + 41, =3 O |2 4

. . . 1 3 . -1 _ 1 4 -3
We saw earlier that the inverse of A = lQ N A = —3 l_Q 1 ]

The unique solution is

ECON207 Session 4 This Version: 17 Sep 2024 45 /84



a Definit ix nne Inverse Matrices
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The Inverse Matrix

(Warning) The same argument doesn't quite hold for left-inverses
Suppose the system is Ax = b where A is m X n, m < n, with left-inverse Afe}t
Pre-multiplying both side of Ax = b by Al’e}t gives
A Ar = ALl b = o= A Lb
However, when we check if x = Al’elftb is a solution, we get
Ax = AAl_e#tb
which may or may not be equal to b, since AAl_e;t *+1,,

o If AAl_e#tb = b, there is a unique solution and you have found it
o If AAleftb = b, there is no solution
ECON207 Session 4 This Version: 17 Sep 2024 46 /84
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The Inverse Matrix

Example: consider the systems

1 2 1 1 2 1
s al[]= o w2l

which we write as (i) Az = b and (ii) Az = c respectively

(i)

1 2
. oA —-4/9 5/9 1/9 .
1 |
The left inverse of A = g ;) is Ajc sy [ 5/9 4/9 1/9] (verify!)

You can verify that
° AAl’elftb = b (despite AA;elft #+ 13) so A;elftb is a unique solution to (i)
° AAl_elftc #+ ¢ so Al_elftc is not a solution to (ii)

47 /84
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The Inverse Matrix

: : : a;; a e
The inverse of an arbitrary 2 x 2 matrix A = | 11 12| if it exists, is
(21 Qg2
Memorize this! — Al = ! @22 TN2] here det(A) = ay a95—aq5a
det(A) |—az  ap 11022012021
o det(A) is the determinant of the 2 X 2 matrix A
@ the inverse exists only if det(A) # 0
o If inverse of A does not exist, we say that A is singular
@ If inverse exists, we say that A is non-singular
@ An alternative notation for det(A) is | A|
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Inverse Matrices
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The Inverse Matrix

5 6

e e L o e A
det(A) |[—5 1 14|-5 1 5 _L

The inverse of A = {1 4] is

The determinant of B = [1 3] isdet(B)=1-6—2-3=0, so B is singular

2 6
When will det(A) = 07

@ if one or both rows or columns are all zero, or
e if one row is a multiple of the other, or
@ if one column is a multiple of the other
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The Inverse Matrix
See readings for

@ general formula for the determinant and inverse matrix for general n X n matrix
@ algorithmic approach to calculating inverses of general n x n matrix
@ deeper understanding of determinant and inverse matrix
Generally speaking, determinant will be zero (and the inverse will not exist) if
@ if one or more rows or columns of the matrix are all zero
e if one column is a multiple of another
@ if one column is exactly a linear combination of the others

If det(A) # 0, then A is “full rank”, and the inverse exists
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The Inverse Matrix

A few additional results:
@ The inverse of a diagonal matrix diag(dy, ... ,d,,) is diag(d;?, ... d,;!)

e If Ais n x n and non-singular, then (A~1)T = (AT)~!
AAT =1, = (A HTAT =1,
= (A_1>TAT(AT>_1 — I(AT>_1 = (A—l)T — (AT)—l
e A and B are both n x n and non-singular, then (AB)™1 = B~1A™1,

B 'A7'AB=ABB'A7' =1 implies B'!A™1 = (AB)!
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The Inverse Matrix

@ The inverse of a non-singular symmetric matrix is symmetric (exercise)
o If Xisnxkwithn>kand Xc=0,,;, < c=0,,,, then
XTX is non-singular

Elaboration: If X isn x k with n > k and cis k x 1, then

Ty Tz o Ty | [C1 [C1T11 T CoTyo + o+ CpTyy
Xe— |T21 Taz v Top | [Co| _ | Caap + Calgp + o F Cplgy
Tn1 Tpo " Tpk Ck LC1Tn1 +62xn2 +'“+Ckxnk
T1q Tqg [T1
x x x
=cp | e | T e | T = e X gt e Xt Xy,
L1 LTpo LL ke
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The Inverse Matrix

¢ =0, = Xc=0,,, always hold. When would ¢ # 0., yet Xc =0,,,,7?

Suppose ¢; # 0 for some ¢, yet Xc =0,,,;. Then we can write

i Xy = 1 X ot e Xy TG X o T X
= Xy=di X+ +di 1 X+ diga Xy + o+ dp Xy where dj = c;/c

o ifall the d; =0, j # i, then X,; = 0,4
@ if exactly one dj #+0, j # 1, then X= de*j, i.e., one column is a multiple of another

@ if two or more d; # 0, then X, is a linear combination of some of the other columns
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The Inverse Matrix

o If there is a vector ¢ # 0,4 such that Xc¢ =0
are “linearly dependent”

nx1. We say that the columns of X

e If X is a data matrix (one column per variable) whose columns are “linearly
dependent”, we also say that there is “perfect collinearity” in X

o If Xec=0,,,, < c=0,,,, then the columns of X are “linearly independent”
@ We also say the “X" has full column rank
@ For more on matrix rank, please see readings

If the columns of X are linearly independent, i.e., Xc =0,,,; < ¢ = 0,4, then
(XTX)™1 exists
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Session 4.4

Session 4.4 Partitioned Matrices
@ Partitioned or block matrices

@ Addition, multiplication and transpose of partitioned matrices
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Partitioned Matrices

We can partition contents of an m X n matrix into blocks of submatrices, e.g.,

1 3 2 6 113 2 6
2 8 21 218 21
A:3124=3124=lﬁ“ﬁ12]
4 2 1 3 412 1 3 21 22
3117 3111 7
. 3 1 2 4
where AH:E , Ay = |4 ,AlQZlg 3 ﬂ and Ay = (2 1 3}
1 3 117
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Partitioned Matrices

@ Partitioned matrices are often called block matrices

@ Many ways of partitioning any given matrix, e.g.,

1326 1 3|2 6
2 8 21 2 812 1
A=131 2 4| =13 1|2 4
4 2 1 3 4 21 3
3117 3 1|1 7

Main point of this section: as long as the matrices are appropriately partitioned, we can
add / multiply partitioned matrices as though the blocks were elements
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Partitioned Matrices

Addition of Partitioned Matrices If A and B are two m X n matrices A and B

partitioned as:

All A12 Bll
— —=2 ——
A mMiXn; MyXny and B = myXn,
A21 A22 BQl
—— —— N——
Mo XNy Mo XNy Mo XNy

where n; + ny = n and my; + my, = m, then

Ay + By Ay + By

XN m, Xn

A+B — my 1 1 2
Agy + By Agy + Bog

My XNy Mo XNy

Anthony Tay
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Partitioned Matrices

Multiplication of Partitioned Matrices. If A and B are m X p and p X n respectively,

and partitioned as:

Ay Agp By, By
s 12 211 212
mq X M X XN XN
A P1 1411 D2 and B — P‘1B 1 p1B 2
21 22 21 22
—— —— —— ——
LMo Xpy Mo XPoy P2 XMy PoXNgy
By, By A1 By + A1gByy Ay Big + A1y By
—— ——
pPLXny Ppixng | myXng My XNy
By By Ay By + Aga By Agy Big + Ay By
Po XMy Pa XNy Mo X1y My XNy

A=
then
All A12
—— ——
AB = myXpy M3 XPg
A21 A22
N N
Mg XPy My XPyl

Anthony Tay
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Partitioned Matrices

Transposition of Partitioned Matrices: \We have

A — m;{xnl m;lxnz :> AT — ’I’LXT'I‘TL]_ HX{‘TLQ
& H/2_2/ 12 22
MoXNy Moy XNy No XMy Mg XMy

e.g., If X is an n x k data matrix partitioned into columns, then

T
T11 L1 o L1k X;kr1

To1 Lo v Laog T Xio

X - . . . . — [X*l X*Q oo X*k] :> X = .
T
Tp1 Tpa o Tpg X*k
X,; is the column vector of all N observations of variable ¢
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Partitioned Matrices

C1
Xe=[X,, X, - X4l 0:2 = 1 X+ Xp 4+ e X,
Ck
rxXh XTI X, XLX., XT X,
T e
XTX = )(:*2 [X*l X,y - X*k]: X*QX*l XL X ; XL X
L X xT X, X7 X XT X

N
Zz 1 %i1 Z - 1155 Z~=1 Li1%ik
N iy Y
— ZIL 1 LioZiy Zl 1$12 El 1 Li2Tk

N v . N.
-Zizlwikmil Zizlmikwvﬁ Zizlm?k
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Partitioned Matrices

If we partition the data matrix X into rows, i.e.,

11 L1z o Tk X1 _ o
o T ma o m| _ X,, | where X, s the row vector containing
: o : : | the jth obs of all variables
Tp1 Tn2 " Tnk Xn*
Xl*
T T T T | Xox
then X'X =[X], X5, - X, ;
Xn*
n
_ y7T T T _ T
- Xl*Xl* + XQ*xQ* + ot Xn*Xn* - ZXZ*X’L*
i=1

N — e’
sum of n k x k matrices
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Partitioned Matrices

A Ajs
SN—— S——
mq Xm mq Xm .
If A= 114 1 ;1 ?| and non-singular, then
21 22
~—— ~——

Mo XMy Mo XMy

_ (Ajg —AjpAsy Agy) 7t —(Ay — A1 Ajd Ay )T A A
— Ay Aoy (Ayy — A Ag) Agy)™h AQ + Agg Agy (A — A Ay Agy) 1A Agy

You can verify this by direct multiplication, to show that

I 0

A 1A = 0 my Tf}1><m2
Mo XMy Moy
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Partitioned Matrices

Yet another type of matrix product is the Kronecker product

Kronecker product, denoted ®, of an m x n matrix A with a p X ¢ matrix B is the
mp X nq block matrix formed by multiplying each element of A by the entire B matrix
For example

ay; 0 a0 a3 0
[an a12 a13}®l1 0] _ 0 a1 ] 0 a;p] 0 agg
(g1 Qg2 (g3 0 1 a;; 0 a0 a3 0
0 a1 0 aip] 0 a3
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Session 4.5 Vectors of Random Variables
o Expectations

@ Variance-covariance matrices
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Vectors and Matrices of Random Variables

Matrix algebra helps in organizing large numbers of random variable, especially their

expectations and variances and covariances
T .
X.,.] ., then we define

If 2 is am x 1 vector of random variables z = [X; X,

T
E(z) = [E<X1) E(X,) .. E(Xm>]
If X is a matrix m X n matrix of random variables, then
BE(Xy) E(Xg) ... E(Xy,)

X: )(:21 )(:22 X2n P E(X)Z
Xt Xz o Xy E(Xp1) E(Xp2) o BE(Xp)

Anthony Tay ECON207 Session 4
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Vectors and Matrices of Random Variables

Let « be a m X 1 vector of random variables. Let

Then the variance-covariance matrix of x, denoted Var(x), is defined as

Var(z) = E((z — E(z))(z — E(x))") = E(ZZ")
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Vectors and Matrices of Random Variables

Var(z) = B(23") = E((z — Elz])(z — E[z])")

X3 XX XX,
- B XQ.Xl X% X2ij
Xm)zvl XmXQ Xm‘jzm
B3 B(%,%,) . B(X,X,)
_ | B(X,Xy)  B(X3) E(X,X,,)
Var(X,) Cov(X{,X5) ... Cou(X{,X,,)
| Cou(Xq,X5) Var(X,) o Cov(Xq, X))
L Cov(X4,X,,) Cou(Xy,X,) .. Var(X,,,)
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Vectors and Matrices of Random Variables
Recall that if X is a (univariate) random variable, then

o E(aX +b)=aBE(X)+b

o Var(aX +b) = a?Var(X)

e Var(X) = E(X?)— E(X)?

We have matrix analogues of these results: Suppose x is an m x 1 vector of random variables,

A = () is @ k x m matrix of constants and b is a k x 1 vector of constants. Then

@ E(Ax+b) = AE(z)+b
o Var(Az +b) = AVar(z)AT
e Var(x) = E(xz’) — E(x)E(z)T
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Vectors and Matrices of Random Variables

Proof of E(Ax +b) = AE(z) + b:
The ith element of the k x 1 vector Az + b is ijl(ainj + b;). The expectation of this term is
E (Z(aijxj + bi)> => a,;B(X,)+b,

j=1 j=1
which is the ith element of the vector AE(x) + b.
Proof of Var(Az + b) = AVar(xz)A™T:
Since Az +b— E(Ax +b) = A(x — E(x)) = AZ, we have

Var(Az + b) = BE((AZ)(AZ)T) = E(AZ2TAT) = AE(22")AT
= A Var(z)AT.

Proof of Var(z) = E(zxz") — E(z)E(z)": Exercise!
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Vectors and Matrices of Random Variables
Let « be m x 1 vector of random variables, ¢ be m x 1 non-zero vector of constants

@ Obviously the variance-covariance matrix of x is symmetric

@ Consider the linear combination c¢T2 (this is a now a single random variable). We have
Var(cTz) = ¢t Var(x)e > 0 forall ¢#0,,.,

@ Var(cTx) cannot be negative since it is a variance

@ If Var(c'z) = 0 then either
e one of the random variables is not actually random, or
e one of the random variables is just a multiple of the other

e one of the random variables is a linear combination of two or more of the other
random variables
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Digression on Symmetric Matrices

A m x m symmetric (and square) matrix A is positive definite if
cTAc >0 forall ¢c+#0,,.,
It is positive semidefinite if cT' Ac > 0 for all ¢ #0,,,,. Similar definitions for negative

definiteness and negative semidefiniteness

@ Variance covariance matrices Var(z) are positive semidefinite

@ If the random variables in x are not linearly dependent, then Var(x) is positive definite

@ Another example: suppose the columns of a n X k data matrix X are linearly
independent, i.e.,

Xc#0,,; forall ¢#0,,,
Then ¢TXTXc = (Xe)TXe > 0 for all ¢ # 04,4, i.e., XTX is positive definite
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Session 4.6

Session 4.6 Principal Component Analysis
e Eigendecomposition of symmetric matrices, without proofs
@ Application to Principal Component Analysis

No discussion of eigenvalues or eigenvectors, see readings if interested
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Eigendecomposition of Symmetric Matrices

Another very important fact about symmetric matrices (Eigendecomposition)

Every k x k symmetric matrix A can be decomposed in the following way

A 0 0 q1T
0 XN - O gy k T
A=QAQT = [(h a2 - Qk] . ;2 . 2 = Z/\i%%
o .o : —
0 0 -~ NJlgfl
@ )\, i=1,..., k are real numbers called eigenvalues (usually ranked \; > Ay > --- > \;)
@ The k x 1 vectors g;, i = 1,..., k are the corresponding eigenvectors

@ () satisfies the property QTQ = I,

(see BPT Chapter 10)
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Sample Variance-Covariance Matrix

Let X be a n x k data matrix, each column contains n observations of some variable,
mean removed. Then

Tip =Ty Tyg —Tg 0 Typ — Tg L11 L1 ot Ty
X — |For =& Fop —Xp v Lo T X | _ | Far Loz v Lo
Tp1 — L] Tpg — Lo o Tpp — T Tp1 Tpo Tk

and XTX is the symmetric sample variance-covariance matrix
n P—
1 n ~2 ~

1 Zn:i:l Ti1 n— 1 Z i=1 1195 no 1 Z 1195

L XTX = 7T 2oio Tizi -1 Zr o Zz 1%2"’5

n—1 :
1 n ~ ~
T i Tik®a niy Zi:l TikTiz v w Zi:l ZH
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Principal Components

Apply eigendecomposition to the sample variance-covariance matrix
1

n—1
Construct the following data matrix

XTX = QAQT

V=XQ=X[q, ¢ - ¢]=[Xas Xqo .. Xg,]
Each n x 1 vector Xgq;, =1, ...,k is an “index variable” formed by a linear
combination of the k£ X variables
d1i

Xg;=[X. X X Qm =q1; X + @i X0+ + G X

di;
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Principal Component Analysis

The sample variance-covariance matrix of Y is

1
n_

YT = QTXTXQ = Q" (- ! —XTX) Q= QTQAQTQ = A

That is, the n x k matrix Y contain observations of k uncorrelated variables

@ first column has obs. of the first index variable, which has the greatest variance

@ second column has obs. of the second index variable, which has the second highest
variance

These index variables are called principal components

Often first two or three indexes account for most of the variance in the data —
dimension reduction
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Principal Component Analysis

causes-of-death-by-state.csv

@ 51 x 14 data matrix

@ age-adjusted number of deaths per 100,000, all races, both sexes, all ages, over the
period 2016-2020

@ across the 51 US states plus District of Columbia (rows)

@ 14 causes of death (columns): accidents & adverse effects (accident), Alzheimer's
disease (Alzheimers), cancer, cerebrovascular diseases (cerebrovascular), chronic lower
respiratory disease (respiratory), chronic liver disease & cirrhosis (liver), diabetes mellitus
(diabetes), heart disease (heart), homicide & legal intervention (homicide), influenza,
kidney disease - nephritis & nephrosis (kidney), pneumonia, septicemia, suicide &
self-inflicted injury (suicide).

Qn: How do states differ by cause of death?
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PCA

R
0000000000 O

Principal Component Analysis

library(tidyverse)
library (ggrepel)

df <- read.csv("data/causes-of-death-by-state.csv")

row.names (df) <- df[,1]
df <- df[,-1]

head(df, 4) # Show data for first four states

Accident Alzheimers Cancer Cerebrovascular Respiratory Liver Diabetes

55.2
62.3
58.6
51.6
Heart Homicide

Alabama
Alaska
Arizona
Arkansas

Alabama
Alaska
Arizona
Arkansas

225.1 12.9
136.1 9.4
139.1

6.7
222.2 10.4

46.1 166.9 51.8 56.
26.0 146.8 37.1 35.
33.8 132.3 30.9 40.
40.9 169.7 42.9 61
Influenza Kidney Pneumonia Septicemia
1.5 16.9 17.0 17.0
2.1 10.0 8.2 8.3
1.6 7.1 9.4 4.8
2.2 18.6 15.7 12.9

Anthony Tay

ECON207 Session 4

0 13.6
0 16.7
2 14.9

.6 12.7

Suicide
16.2
26.5
18.2
18.9

20.5
19.7
23.9
30.8
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Principal Component Analysis

# Importance of each PC

dfs <- scale(df, scale=FALSE) # remove the mean but don't standardize
dfpcal <- prcomp(dfs)

summary (dfpcal)

Importance of components:

PC1 PC2 PC3 PC4 PCS PC6 PC7
Standard deviation 32.8587 12.5414 9.57876 7.44281 6.38255 4.53854 3.63309
Proportion of Variance 0.7258 0.1057 0.06168 0.03724 0.02738 0.01385 0.00887
Cumulative Proportion  0.7258 0.8315 0.89319 0.93043 0.95781 0.97166 0.98053

PC8 PC9 PC10 PC11 PC12 PC13 PC14
Standard deviation 2.89666 2.50515 2.28355 2.17946 1.54667 1.37289 0.24006
Proportion of Variance 0.00564 0.00422 0.00351 0.00319 0.00161 0.00127 0.00004
Cumulative Proportion 0.98617 0.99039 0.99389 0.99709 0.99869 0.99996 1.00000
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Principal Component Analysis

# Cause of Death Loading for First Two PCs

pcland2 <- as.data.frame(dfpcal$x[,1:2]) # Collect first two PCs into a data fram

loadingsland2 <- data.frame(xstart = O, # A data frame containing the

ystart = 0, # loadings (weights) placed on each
PC1 = dfpcal$rotation[,1], # cause of death in the first two

PC2 = dfpcal$rotation[,2]) # principal components

pl <- ggplot(loadingsiand2,
aes(x = xstart, y = ystart, xend = PC1, yend = PC2)) +
geom_segment (arrow = arrow(length=unit(0.1, "inches"))) + ylab("PC2") + xlab("PC1") +
annotate("text", x=loadingsland2$PC1l, y=loadingsland2$PC2+0.04,
label=rownames(loadingsiand2), size=4) +
theme_bw()

ECON207 Session 4 This Version: 17 Sep 2024 81/84



PCA
00000000080

Principal Component Analysis

0.84

Accident
0.4+ i
Cancer Respiratory
N
O
o
0.04
-0.4
—0.75 0,50 ~0.25 0.00
PC1
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Principal Component Analysis

# Each States PC1 and PC2 scores
ggplot(as.data.frame(pcland2), aes(PC1l, PC2, label = rownames(pcland2))) +
geom_point() + geom_text_repel(size=4, box.padding = 0.1) + theme_bw()
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20 Maine®
Kentucky New Mexco Alaskg,
Ohio South Caroljina DeIaW{r:a Ver WK?T' 9 New Hampshire  Colorado
N o . North Carolina~2'""® Floridag Arizona ®
O Tennessee frdiana Wisconsin—e .South Dakota ./Oregon ®Minnesota
T ) ) o Montana Rhode Island eMassachusetts
Oflahoma Missouri PennsylvaPia Kansa8  Idaho V\fashmgton
MissisSsiopi Lguisiana lowa Nebraska ! Connecticut
pp Afkansas Michigap . 2 V|rg|n|a NL(J)trtE Dakota
Alabama Nevadg Georgia Texas, "R Ne\fv Jergey * Salifornia .
204 District of Columbia Maryland Hawail
New York
50 0 50
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Roadmap

(Previous) Session 1: Statistics Review
(Previous) Session 2: Simple Linear Regression
(Previous) Session 3: Estimator Standard Errors; Multiple Linear Regression
This Session 4: Matrix Algebra

Next Session 5: OLS using Matrix Algebra
Session 6: Hypothesis Testing

Session 7: Prediction

Session 8: Instrumental Variable Regression
Session 9: Logistic and Other Regressions
Session 10: Panel Data Regressions

Session 11: Introduction to Time Series
Session 12: Time Series Regressions
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