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Matrix Definition

Session 4.1
@ Matrix Definitions and Operations
o Types of matrices, notation

e Additions, scalar multiplications, Hadamard product, matrix multiplication,
transposition
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Matrix Definition

Matrix with m rows, n columns
a1, Q9 v Gy @ Order or Dimension m x n

n
ows | G2t @22 Qg o If m = n: square matrix
: @ If m>1and n =1: column vector
A1 Gy A, e If m=1and n > 1. row vector
@ Ifm=1and n=1: scalar
columns

a;; is the (i, j)th element or term of the matrix
Other notational conventions:
® (@;;)yxn refers to a m x n matrix with (i, j)th element a,;

o (A),; refers to the (i, j)th element of the matrix A
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Matrix Operations (Add, Hadamard Prod, Scalar Mult.)

Given two matrices A and B of the same dimensions:

@ Equality: A=B <= (A);;=(B);;foralli=1,....m;j=1,...,n
o Addltlon (A + B)Z_] = (A)’L_] + (B)Z] for a” 'L = 1, ey, j = ]_7 ey

e Matrix addition is element-by-element addition

@ Hadamard Product: (A ©® B)ij = (A)ij(B)ij

e Hadamard Product is element-by-element multiplication
e Alternative notations for Hadamard Product: Ao B, Ax B

For any matrix A and any scalar a € R

@ Scalar Multiplication: (ad),;; = (Aa);; = a(A);; foralli=1,...,m;j=1,...n
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Matrix Operations (Add, Hadamard Prod, Scalar Mult.)

Examples: If A = lall %12 al?’] and B = lbll brz blg}, then
Qg1 Ggo do3 byy Doy bog

oA+B:[

ajp+byy ajp+byy agzt+ b13]
Aoy +boy  Ggo + byy g3+ bog

e AOB= [allbll 12019 (113513]
Gg1bay  Agabay  ag3bas

aa aa aa
0 oA = Ao = 11 12 13
Qg1 QGgo Oéazg

e A—B=A+(-1)B= |:a11_b11 a1y — by ayy—byy
Ggp —bay a9y —boy a9y — Doy
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Matrix Operations (Add, Hadamard Prod, Scalar Mult.)

The following should be obvious:
e (A+B)+C=A+(B+C), (A®GB)0C=A0(B06C)
e A+ B=B+A, AOB=B0OA
o AO(B+C)=A0B+AOGC
e v(A+B)=aA+aB, (a+p)A=aA+ (A
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Definitions and Matrix Operations
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Matrix Operations (Transposition)

@ Matrix Transpose of A, denoted AT, is defined by (AT)Z«j = Aji

a a a a1 Q21
e.g., if A = 1 12 13 s then AT = | Q19 (L22
Q21 G222 Ag3

Q13 Qdo23
)
eg.,if r= |z thenxT:[a: Ty 3]
g : 2| > 1 Ta T3
LT3
_ T
We often write column vectors as = [x; x5 -+ x,] to save space

Sometimes a matrix transpose is written as A’ instead of AT
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Matrix Operations (Transposition)
Clearly

o (A+B)"=A"+B"
o (AOB)T= AT B"

o (@A)t = AT
o (AT =4
Definition: A square matrix is symmetric if (A),; = (A);;, i.e., AT = A
1 3 2 1 3 2
eg., |3 4 6| issymmetric, |7 4 6] is not
2 6 3 2 6 3
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Definitions and Matrix Operations
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Matrix Operations (Matrix Multiplication)

Matrix Multiplication/Product: For any m x n matrix A and n X p matrix B, we have

n
(AB>¢j = Zaikbkzj :
k=1

i.e., (7,7)th element of AB is the sum of the product of the elements of the ith row of
A with the corresponding elements in the jth column of B

For example,
° (AB)y; = Zzzl a1pbpr = a11b11 + 9Dy + aygbgy + -+ aq,, by
® (AB)y3 = Zzzl Agbrg = A91b1g + Aggbog + Aggbgg + - + Ay, b3
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Matrix Operations

For the product of a 3 X 3 matrix and a 3 X 2 matrix, we have

Ay Grx A3 bi1| Diz -l a11b11 + @190 +aq3b5 | i
b b =
a21 a22 a23 b21 b22 o [ ]
L A3q Az Qz3 | | 31 32 | L L] [ )
| 1[0y [bi2|]  [X) b b b b
app Gz G 11| b2 21 G1kbr |‘111 12 T @12023 + a13037 I_
b b =
az1 Gz Gag b21 b22 ° °
L a31 CL32 a33 1 L 31 32 | L L] [} |
[a a a3 ] | i [ 23 b 23 bo]
11_Q12 Qi3 bii| bio k1 @1k0k1 k=1 P1kk2
@21 Gz Q23 bor| baa| = |a21b11 T Ag3b51 + az303, | °
b b
L a31 a32 a33 1 U 31 32_ L [ ] L] i
and so on.
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Definitions and Matrix Operations
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Matrix Operations (Matrix Multiplication)

2 8
fA=13 0 ,B={4 7] andC’=l1 3 ﬂ then

5-441-6 5-74+1-9

5 1 6 9 6 2
2 8 47 2-44+8-6 2-74+8-9 56 86
AB=13 0 [6 9]: 3-4+0-6 3-7T+0-9| =112 21]|.
5 1 26 44

e A and B “conformable” for the product AB requires no.cols(A) = no.rows(B)
@ Even if A and B are conformable for AB, the product BA might not be possible

o Even if AB and BA are possible, they may not be equal (might not even be the
same dimensions)
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Matrix Operation (Matrix Multiplication)

A = matrix(c(2,8,3,0,5,1),
nrow=3, byrow=T)
A

[,11 [,2]
[1,1] 2 8
[2,1 3 0
(3.1 5 1

A %*% B

[,11 [,2]
[1,] ©56 86
2,1 12 21
[3,] 26 44
B 7% A

Error in B %x} A: non-conformable arguments

Anthony Tay

B = matrix(c(4,7,6,9),
nrow=2, byrow=T)
B
[,11 [,2]
[1,] 4 7
[2,1 6 9

A Y% C

[,11 ,21 [
[1,] 50 22
[2,] 3 9
[3,1] 11 17
C %*% A

[,11 [,2]
[1,1] 31 12
[2,] 43 53

ECON207 Session 4

C = matrix(c(1,3,4,6,2,5),
nrow=2, byrow=T)

[,11 [,21 [,3]
[1,1 1 3 4
[2,] 6 2 5

,31]

12
25

This Version: 17 Sep 2024 13 /84

Matrix Operations (Matrix Multiplication)

Easy to show

o (AB)C = A(BC)if Aismxn, Bisnxpand CispXxgq
e A B+C)=AB+ ACifAism xn, Band C aren x p
e (A+ B)C=AC+ BCif Aand Barem xnand Cisn X p

Proof of (AB)C = A(BC):

((AB)C);;

Anthony Tay
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Bc)rj = <A<BC)>ij
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Definitions and Matrix Operations
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Matrix Operations

In some respect, matrix multiplication behaves quite differently from multiplication of
numbers:

€.g., A matrix with all elements 0 is the “zero matrix” 0,,,,,
2 41 =2 4 00 Sometimes subscripts left out
(] =
1 2 1 -2 0 0 ¢ A0=0
@ 0B=0

° _1% _bJ l_l% —bl} = lg g] @ But AB =0 does not imply A=0o0or B=0

@ Possible for A # 0, yet A2 =AA =0
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Definitions and Matrix Operations
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Matrix Operations (Matrix Multiplication)

It is possible for Ab = Ac, yet b #+ ¢

]l Sl i

There is an important special case where Ab = Ac = b =c¢

e.g.,

We'll come to it later

Important to understand Ab = Ac does not imply b = ¢ in general
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Definitions and Matrix Operations
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Relationship between Matrix Multiplication and Transpose
Suppose A is m X n and B is n X p, then

(AB)T = BT AT
Proof: We have

"

((AB>T>ij = (AB)ji (A)jk(B)ki

e
S
—

(AD);(BY)

M- 11

(BT)ik:<AT>k:j = (BTAT)ij

e
Il
—_
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Definitions and Matrix Operations
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The |dentity Matrix

The identity matrix [, is the n X n matrix such that

1 i
<In>ij:{ T for i,j=1,....,n

0 ifi#j
That is,
10 - 00
01 - 00
I, = : :
00 - 10
00 - 01

If Aism X n then
Al,=A and [, /A=A
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Diagonal, Upper and Lower Triangular Matrices

The identity matrix is an example of a diagonal matrix
A diagonal matrix D is a square matrix such that (D);; = 0 for all i # j

@ It doesn’t matter what the diagonal elements (D), are

e Diagonal matrices are often written diag(d,, ds, ..., d,,)
@ The identity matrix is diag(1,1,...,1)
A lower triangular matrix L is a square matrix such that (L),; = 0 for all i < j

An upper triangular matrix U is a square matrix such that (U),;; = 0 for all i > j

ECON207 Session 4 This Version: 17 Sep 2024 19 /84

enda  Definitions and Matrix Operations I| ner Fn C nverse Matric B utm ned | \ m\

00000000000000000e000

Diagonal, Upper and Lower Triangular Matrices

diagonal lower triangular upper triangular
* 0 0 0 * -0 0 *
0 =* 00 * -+ 0 0 0 * %

S O
S O
S %
*
e
e
*
*

*

*
*
)
)
)

where * means any value, including 0
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Important examples of matrix products

Example: The general linear system of equations

a;llx]_ + @122132 + + a:]_nxn — bl
A1 %y + Ag0To + -+ + a9, T,, = by

A1ty + Aol T+t Amn®n = bm

ay; Gy .. Gy x b,
) a a . Q T b
can be written as 21 22 2n 2l =172 or Ax=0b
A1 Q2 Qyn Ly, bm
Often the problem is: given A and b, want to find x so that equation holds
ECON207 Session 4 This Version: 17 Sep 2024 21/84

Definitions and Matrix Operations
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Important examples of matrix products

T
If o =[x xy - x,] , then
Ly
T n
S U 2| _ 2
Inner Product: 'z = [z, xy - x,]|"?| = E x;
’ i=1
;Cn
The norm of a vector z is defined as ||z|| = VaTx
2
L1 Ly Lyly o Lyl
2
x ol €T e X0l
Outer Product: zz™ = |"2| [z, xy - z,|= 721 72 = 72m
T T, T, X, Ty v T2
n n*1 nv2 n
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Definitions and Matrix Operations
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Important examples of matrix products

T
— _ TpAr— S N
Ifx =[x, xo - x,] ,and A= (a;),yp then z" Az =37 > 1 T
For the case when n = 3:

Q11 Q12 Q13| |T1
T Az = [ x5 x3] |a; as ass| |z
A3 Agy Gz3] LT3

Ty

= [T1a1; + o051 + 23031 T1A15 + ooy + 3035 T1a13 + Taog + Tzaz;] | 2o

Z3

_ .2 2 2
=T7ay1 + T5095 + T5033 + T1To(a1 + agq) + Ty T3(a13 +agy) + TaT3(as3 + azs)

When A is symmetric, 27 Az is called a quadratic form
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Session 4.2

Session 4.2 Comments on the Inner Product
@ Geometric understanding of the inner product

@ Norms and angles between vectors
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Inner Product
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Comments on the Inner Product

In some contexts, a “vector” is simply an ordered list of numbers with no shape

@ e.g., an general n-vector z = (xy, %y, ..., Z,,)
@ e.g., a specific 4-vector (1,5,3,2)

Inner product / Scalar Product / Dot Product w - v or (u,v)

n
U= (Up,Ugy ooy Uy) (V] Vo, ey U,) = Uy 0] + UgUy + -+ + w0, = E wu;v;
i—1

In matrix algebra, we organize vectors into rows or columns

T

If u and v are columns vectors, the inner product is v~ v

Anthony Tay
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Inner Product
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Comments on the Inner Product

We can think of vectors as points in space

e.g. for vectors in R2 such as u = (uy,uy) = (—=1,1), v = (vy,v5) = (2,2)

0}
-1

-2 0 2
X

Anthony Tay

@ The norm of v is the distance from
O =(0,0)tov=1(2,2)

v = \/v2 + 02 = V2

(Pythagoras's Theorem)

@ distance from u to v is

V(vy —uq)? + (g —uy)? = v —ul

=V10

4
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Comments on the Inner Product

Can view a vector v as an “arrow” from O to v

3 . .
@ |v|| is length of arrow representing v
) @ But use “norm” instead of “length”
Y Scalar Multiplication awv
@ Stretches a vector if |a| > 1)
0 . .
@ Shrinks a vector if |o| < 1
1 @ Returns the vector to the origin if &« =0
- 0 5 4 @ flips the direction of the vector if @ < 0
X v
The vector H has unit norm
v
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Inner Product
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Comments on the Inner Product

Vector Addition:

utv
3 N . . .
@ u + v is the diagonal, starting at O, of
) the parallelogram formed by w and v
y @ When thinking of vectors as “arrows”, the
1 starting position is irrelevant
0 @ The black arrow v and the blue arrow are

the same vector

) 0 2 4 @ The red arrow u and the red arrow are
the same vector
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Inner Product
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Comments on the Inner Product

@ Since
3
u+(v—u)=v
2 v-u the vector v — u is represented by the
y Y arrow from u to v
1
u @ It is also represented by the arrow from
0 the origin to the point
0}
» (3,1)=(2,2)— (—1,1)
-2 0 2 4
X
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Inner Product
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Comments on the Inner Product

eg, w=(—2,1)and z = (3,2) Interpretation of the dot product of two
different vectors:

If 6 is the angle formed at the origin by two

2 W vectors w and z, then
z
y o w -z = |lw| |z] cosd

0 i.e., w ;
— - — = cosf
lwll |2

-2

-2 0 2 4 . . .
X i.e., the dot product of two unit vectors gives

the cosine of the angle formed by the two
vectors at the origin
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Comments on the Inner Product
Proof using the Cosine Rule:
Iz —wl = 22 + r]? — 2]12] ] cos 0

(NB: Pythagoras's Theorem is when 6 = 7/2, so cosf = 0)

Converting to inner products (we'll take the vectors to be column vectors)

(z=w)'(z—w) = (" —w")(z —w)

=212+ wlw— 2w —wrz

=21z +whw — 2wz (since zTw=w"2)

Comparing the two, we have w - z = | z| |w]|| cos 6
ECON207 Session 4 This Version: 17 Sep 2024 31/84

Inner Product
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Comments on the Inner Product

The Cosine Rule also gives the Triangle Inequality

Since —1 < cosf < 1, we have
|z —wl? = |I2]* + [w]* — 2 ||z |w] cos 0
< 202 + wl? + 2 2] ]
= (2] + Jw])?
|z —wl <lz] + [w]

Length of one side of a triangle is less than the sum of the lengths of the other two sides
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Comments on the Inner Product

All of this extends to n-vectors

T
o Ifx =[x, zo - x,] , then
o |z| = Z?zl z? = VxTxz is the “distance” from the origin to =

o |z —yl = \/E?:l(mz —y,;)? is the “distance” between x and y

But what is “distance” in n-dimensions? We can show ||z — y|| satisfies the three main
properies of distance:
@ it is non-negative (obvious)

@ it is symmetric, i.e., distance between x and y is the same as distance between y
and z (also obvious)

@ it satisfies the triangle inequality
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Roadmap

Comments on the Inner Product

The key is the Cauchy-Schwarz Inequality: For any two n X 1 vectors u and v, we
have

Jut o] < Juf o]

Equality holds only if u = awv

Proof:

Anthony Tay

o lfu=0,,,0rv=0

nx1. then the CS-Inequality holds trivially with equality
@ u = aw, then

uv] = [(av)To] = [afvf*  and  |ul[v] = [av]]v] = |af]v]?
so the CS-Inequality holds (with equality)
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Inner Product
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Comments on the Inner Product

o If u # aw for any . Then

0 < (u—av)t(u—av) = utu—avtu—autv+a?v v = uTu—2auTv+a?vtv

This inequality holds for all c.. At the particular values oo = u"v /v v, we have

T T, )2 T, \2
u'v (u'v) (u'v)
0<ulu—2—utv+ —S0vto=ulu—
vTo (vTw)?2 vTo

= (uTu)(vTv) < (uTv)?

Taking square roots gives the result |uv| < |ul||v|
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Inner Product
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Comments on the Inner Product

Cauchy-Schwarz Inequality implies the Triangle inequality
Let z, y, z be any three n X 1 vectors and let w = x —y and v =y — 2. Then
lz —2|* = |z —y +y— 2|
=(@—y+ty—2)(r—y+y—2
=@ -y @—y) +2@ -y (y—2)+y—2"y—2
<z =yl +ly — 21 + 2z — )" (y — 2)|
<z —yl? + ly — 21 + 20z =yl |y — 2| = (= — gl + |y — 2[)?

Taking square roots gives |z — z| < ||z — y| + |y — Z|
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Comments on the Inner Product

© We can treat |z — y| as “distance” from x to y even in n-dimensions
e even though we can't literally measure this distance with a ruler

@ We can treat ||x| as “distance” from origin to = (“norm")

Furthermore, since |z1y| < ||lz||y| implies —1 < ||;fi|?;/|| <1

We define the “angle” between = and y to be 6 such that
Ty
l={lly]

If zTy = 0 we say that = and y are orthogonal (general n-dimensional version of
“perpendicular”)
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Session 4.3

Session 4.3 Inverse Matrices
@ Left-, right-, and “two-sided” inverse matrix
@ Properties of the inverse matrix
@ Determinants

Less emphasis on methods for computing inverses and determinants
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The Inverse Matrix

Let A be an m X n matrix
@ The n X m matrix B is a left-inverse of A if BA=1,

@ The n x m matrix C'is a right-inverse of A if AC =1,.

1 1
-1 02 04
Let A = i ; and B = [ 9 02 _0'4]

B is a left-inverse of A (or A is the right-inverse of B) since

BA— -1 02 04 ; 1 _|-1+04+16 —-1+02408] (1 0
12 —02 —04 4 92 | 2—-04—-16 2—-02—08] (0 1
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Inverse Matrices
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The Inverse Matrix

B is not a right-inverse of A since AB =

10 0
0 02 04
0 04 0.8

In fact A has no right-inverse

1 1 b 1 00
2 1 [Z . ;,] =10 1 Of then we have
4 2 0 0 1

Suppose AC =

2b+e=1 and 4b+2e=0

which is a contradiction
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Inverse Matrices
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The Inverse Matrix

A has left- and right-inverse only if it is square, and they will be the same matrix, i.e.,

e lfAisnxmn,and BA=AC =1

mn’

then it must be that B =C
BA=1, = BAC=1,C = BIl,=C = B=C

Then B = (' is the “two-sided inverse”, or simply the inverse of A, denoted AL

The inverse of a n x n matrix A, if it exists, is the unique matrix A~' such that

ATA=1 = AA!
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The Inverse Matrix

We emphasize
o A has a (two-sided) inverse only if it is square

@ But not all square matrices have an inverse

|13 . 1|4 =3
A—l2 4] is A __El ]

Examples:

Verify by direct multiplication:
114 =3](1 3 10
—14_ = _
cas B Bl
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Inverse Matrices
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The Inverse Matrix

The matrix A = B ﬂ has no inverse

Proof: Suppose

1 2| |la b |a+2¢c b+2d| |1 0
2 4f|c d| |2a+4c 2b+4d| |0 1

This implies @ + 2¢ = 1 but 2a + 4¢ = 2(a + 2¢) = 0 which gives a contradiction

ECON207 Session 4 This Version: 17 Sep 2024 43 /84

The Inverse Matrix

Consider the system of n equations in n unknowns

1121 + 19T + -+ ALy = bl

b a11 a12 ces aln fL'l bl

A91T1 + A99Ty + -+ + A9, T, = a a . a T b

2141 2242 2nn . 2 21 2? on ‘2 _ '2 or Ar — b
Op Ty + QpoTo + 0+ Qpp Ty = bn Un1 An2 - Onn Tn bm

If A has an inverse, then the unique solution to this system is
Az =b <= z=A"1b

e Ar=b=>A1Az=A""b=2=A"1
er=A1= Az = AA b =bsox = A 1bis indeed a solution
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The Inverse Matrix

Example: consider the system

x4 3wy =1 1 3] [x, 1
or = or Az =b
20 + 4y =3 2 4 E2: 3
) ) |1 3] . 1 114 =3
We saw earlier that the inverse of A = lZ 4_ is A7 = —5 l_z 1
The unique solution is
114 =31 5/2
1y .+ _
ato=—3 1% 3] - [ 4]
ECON207 Session 4 This Version: 17 Sep 2024 45 /84

The Inverse Matrix

(Warning) The same argument doesn’t quite hold for left-inverses
Suppose the system is Az = b where A is m X n, m < n, with left-inverse Afe}t
Pre-multiplying both side of Az = b by Al_elft gives
Ay Ar = AL b = o= A
However, when we check if z = A };b is a solution, we get
Ax = AAl_éctb
which may or may not be equal to b, since AAl_e;t *+1,,

o If AAl_éctb = b, there is a unique solution and you have found it
i . .
o If AA; ;b # b, there is no solution
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The Inverse Matrix

Example: consider the systems

1 2 1 1 2 1
2 a|l=] e o 2R

which we write as (i) Az = b and (ii) Az = c respectively

(i)

1 2
The left inverse of A = |2 1| is A[elft = [_51%99 _51?9 };3] (verify!)
3 3

You can verify that

© AA;};b="0 (despite AA; ', # I3) so Al bis a unique solution to (i)
® AA};,c# cso Ajls cis not a solution to (ii)
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Inverse Matrices
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The Inverse Matrix

. . ) a a e .
The inverse of an arbitrary 2 X 2 matrix A = l 11 12], if it exists, is

Qg1 Qoo
Memorize this! — A~ = 22 12| here det(A) — a.- e —a.od
det(A) —G91 QAq1 < > 11%22 12421

det(A) is the determinant of the 2 x 2 matrix A

the inverse exists only if det(A) # 0

If inverse of A does not exist, we say that A is singular
If inverse exists, we say that A is non-singular

An alternative notation for det(A) is | A]
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The Inverse Matrix

5 6

R EA]
det(A) |—5 1 14 |—5 1 % _ﬁ

The inverse of A = ll 4] is

The determinant of B = E g] isdet(B)=1-6—2-3=0, so B is singular

When will det(A4) = 0?

@ if one or both rows or columns are all zero, or
@ if one row is a multiple of the other, or
@ if one column is a multiple of the other
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The Inverse Matrix

See readings for

@ general formula for the determinant and inverse matrix for general n X n matrix
@ algorithmic approach to calculating inverses of general n X n matrix
@ deeper understanding of determinant and inverse matrix
Generally speaking, determinant will be zero (and the inverse will not exist) if
@ if one or more rows or columns of the matrix are all zero
@ if one column is a multiple of another
@ if one column is exactly a linear combination of the others

If det(A) # 0, then A is "full rank”, and the inverse exists
ECON?207 Session 4 This Version: 17 Sep 2024
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The Inverse Matrix
A few additional results:

@ The inverse of a diagonal matrix diag(dy, ..., d,,) is diag(d;?, ... d,;!)

e If Alis n x n and non-singular, then (A71)T = (AT)~!
AA Y =T = (A HYTAT =1,
= (AHTAT(AT) 1 = [(AT)L = (A )T = (47)?
e A and B are both n x n and non-singular, then (AB)™! = B~1A~1,

B 'A'AB=ABB'A ! =1 implies B 1A = (AB)!
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The Inverse Matrix
@ The inverse of a non-singular symmetric matrix is symmetric (exercise)
o If Xisnxkwithn>kand Xec=0,,, < c=0;,,, then
XTX is non-singular

Elaboration: If X isn x k with n > k and cis k x 1, then

Tip Tz v T | [Gr [C1T11 + CoTqg + -+ CpTyg
X¢— |T2r Taz v Top | [Cof | Ca®yy F Calgy o Cplay
Tpn1 Tpo ° Tpk Ci LC1T 01 Jr(323"712 T CpT g
Ty Tqo [T1k
_ T2y Tao Lok | _
=c | Tt | Tt | T =aXg teaXn b e X
LTn1 Ty LT ke
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The Inverse Matrix

¢ =04, = Xc=0,,,; always hold. When would ¢ # 0;,,; yet Xc =0,,,,?

nx1l:

Suppose ¢; # 0 for some 7, yet Xc = 0,,,;. Then we can write

Xy = X+t Xy e Xy + o T aX

o ifall thed; =0, j #i, then X,; =0,,,4

o if exactly one d; # 0, j # i, then X; = d; X, i.e, one column is a multiple of another

®91

@ if two or more d; # 0, then X, is a linear combination of some of the other columns
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The Inverse Matrix

o If there is a vector ¢ # 0, such that Xc¢ =0 we say that the columns of X

are “linearly dependent”

nx1:

o If X is a data matrix (one column per variable) whose columns are “linearly
dependent”, we also say that there is “perfect collinearity” in X

o If Xc=0,,, & c=0,,,, then the columns of X are “linearly independent”

nx1
@ We also say the “X" has full column rank
@ For more on matrix rank, please see readings

If the columns of X are linearly independent, i.e., Xc =10 < ¢ = 0y, then

nx1

(XTX)™! exists
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Session 4.4 Partitioned Matrices
@ Partitioned or block matrices

@ Addition, multiplication and transpose of partitioned matrices
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Partitioned Matrices
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Partitioned Matrices

We can partition contents of an m X n matrix into blocks of submatrices, e.g.,

1 3 2 6 113 2 6
2 8 21 218 21
A:3124:3_124:m11ﬁ12]
4 2 1 3 412 1 3 21 722
3 1 17 3111 7
. 3 1 2 4
- 3 117
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Partitioned Matrices

@ Partitioned matrices are often called block matrices

@ Many ways of partitioning any given matrix, e.g.,

1326 1 3|2 6
2 8 21 2 812 1
A=131 2 4| =13 1|2 4
4 21 3 4 21 3
3117 3 1|1 7

Main point of this section: as long as the matrices are appropriately partitioned, we can
add / multiply partitioned matrices as though the blocks were elements
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Partitioned Matrices

Addition of Partitioned Matrices If A and B are two m X n matrices A and B
partitioned as:

All A12 Bll B12
—_ —== —_ —=
A = | maxng and B = MyXNg  MyXNg
A21 A22 BZI BQQ
—— —— —— ——
Mo XNy  MyXNg Mo XNy  MyXNg

where n; + n, = n and my; + my, = m, then

A1+ By A+ By

A+ B = ™My X1y My XMy
Agy + By Agy + By
Mg XN Mo XNy

ECON207 Session 4 This Version: 17 Sep 2024 58 /84



Partitioned Matrices

Multiplication of Partitioned Matrices. If A and B are m X p and p X n respectively,
and partitioned as:

All A12 Bll B12
—=2 £ —22 .
A= My Xpy My XPy and B = P1Xny  pypXng
A21 A22 B21 B22
—42 2z —2 242
Mo XPy Moy XDy Do XMy PyXNy
then
All A12 Bll B12 AllBll + A12B21 A11B12 =+ A12B22
X N — — 2
AB — My Xpq My XDoy PLXNy  PpyXng | My XMy My X7y
Ay Ay By By A9 By + Ay By Ay By + Ay By
A 42 —4 —Z2
Mo XPr Mg XPy P2 XNy PaXNg Mg XNy Mo XNy
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Partitioned Matrices

Transposition of Partitioned Matrices: We have

T T

All A12 All A21

—— —— —— ——

| myixny myxng T _ |nixmy nyixm,
A=1"4" A = A=t Ty
21 22 12 22

Ay Ay A Ay

Mo XNy Mg XNy Mg XMy Mg XMy

e.g., If X is an n x k data matrix partitioned into columns, then

T
Ti1 iz 7 Tk Xil“l

_ | To1r Too o Top| _ v [ X
X - : : . : - [X*]. X*2 e X*k] = X - :*
T

LTp1 Tp2 - Tpg X*k

X,; is the column vector of all N observations of variable ¢
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Partitioned Matrices

C1
Ca
Xe= [X*l Xp X*kz} N ch*l +62X*2 +"'+Ck:X*k
Ck
-y T T T T
X’,"Tl Xg:I‘lX*l X%1X*2 XikI‘lX*k
T _ 2 _ 2 1 2 2 2 k
XTX = :* [X*l X*2 X*k] — * \ * * : * . * . *
T T T T
—X*k: X*kX*l X*kX*2 X*k:X*k
- N o N N
Zizl Li1 Zz':}]%l@’/w Z~:1 L1k
N 5 N
— Zizl Ti2L41 Zz':l Lo Zizl Ti2Z i
N N N,
_Zizl TikTil Zizl Tikliz Zizl Tk
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Partitioned Matrices

If we partition the data matrix X into rows, i.e.,

T11 L1z o Tk X1, ) o
o T wa o wy| _ X, where X, s the row vector containing
: : : i | the jth obs of all variables
Tn1 Tn2 " Tng Xn*
Xl*
X
then XTX=[X], X3, - XL]|™%
Xos
n
_ 7T T T _ T
- Xl*Xl* + X2*$2* + ot Xn*Xn* - ZXZ*X7*
i=1
DS ——

sum of n k X k matrices

ECON207 Session 4 This Version: 17 Sep 2024 62 /84



Partitioned Matrices
0000000080

Partitioned Matrices

N—— ——
mi Xm m+, Xm .
If A= 114 ! 114 *| and non-singular, then
21 22
21 22

Mo XMy My XMy
FE (Ap — AppAyy Agy) ™ —(Ayy — Ayp Ay Ay ) 1A Ay
— Ay Aoy (Ayy — App Agd Agy )71 Agy + Ay Ay (Ayy — Aqp Aoy Agy) T A A

You can verify this by direct multiplication, to show that

I 0

A1A = 0 my "}1><m2
My XMy My
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Partitioned Matrices

Yet another type of matrix product is the Kronecker product

Kronecker product, denoted ®, of an m x n matrix A with a p X ¢ matrix B is the
mp X ngq block matrix formed by multiplying each element of A by the entire B matrix

For example

ayp 0 a0 ja O
lall a9 alg}@)ll O] _ 0 a1 | 0 ap| 0 a3
(g1 Gzp Qg3 0 1 apy 0 japp 0 fayz 0
0 a1 | 0 an| 0 aq
ECON207 Session 4

This Version: 17 Sep 2024 64 /84



Vectors of RVs
©0000000

Session 4.5

Session 4.5 Vectors of Random Variables

@ Expectations

@ Variance-covariance matrices

This Version: 17 Sep 2024 65 /84
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Vectors of RVs
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Vectors and Matrices of Random Variables

Matrix algebra helps in organizing large numbers of random variable, especially their

expectations and variances and covariances
T .
X,,] . then we define

If 2 is a m x 1 vector of random variables z = [X; X,

T
E(z) = [E<X1> BE(X,) .. E<Xm)]
If X is a matrix m X n matrix of random variables, then
Xll X12 ces Xln E(Xll) E(X].Q) A E(Xlﬂ)
E(X91) E(Xp) ... E(Xy,)

X = )(:21 )(:22 X2n PE E(X) —

E(X)

Xml Xm2 an E(Xml) E(Xm2)
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Vectors and Matrices of Random Variables

Let  be a m x 1 vector of random variables. Let

Then the variance-covariance matrix of x, denoted Var(x), is defined as

Var(z) = E((z — E(z))(z — E(x))") = E(Z5")
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Vectors of RVs
[e]e]e] lelelele]

Vectors and Matrices of Random Variables

Var(z) = E(23") = E((z — Elz])(z — E[z])")

X7 X1 X, X, X,
- B X2'X1 X% XZXm
XX, XX, XX
B2 B(RK) . B(5,K,)
| EGLX) B E(RLX,)
Var(X,) Cov(X1,X5) ... Cou(X,X,,)
_ | Cou(Xy, X5) Var(X5) .. Cou(X,y,X,,)
_Cov(X.l,Xm) Cov(X.z,Xm) Var(Xm)
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Vectors and Matrices of Random Variables

Recall that if X is a (univariate) random variable, then
@ E(aX+b)=aE(X)+b
o Var(aX +b) = a? Var(X)
° Var(X) = E(X?) — E(X)?

We have matrix analogues of these results: Suppose x is an m x 1 vector of random variables,
A = (a;§)m is a k x m matrix of constants and b is a k X 1 vector of constants. Then

@ F(Ax+b)=AE(x)+b
o Var(Azx +0b) = AVar(z)AT
o Var(z) = E(xa’) — E(x)E(x)*
ECON207 Session 4 This Version: 17 Sep 2024 69/84

Vectors and Matrices of Random Variables

Proof of E(Ax +b) = AE(x) + b:
The ith element of the k x 1 vector Az + b is Z;zl(ainj + b;). The expectation of this term is
E (i(ainj + bz)> = iaijE(Xj) + 0,

j=1 Jj=1
which is the ith element of the vector AFE(x) + b.
Proof of Var(Az + b) = AVar(z)A™:
Since Ax +b— E(Ax +b) = A(x — E(x)) = AZ, we have

Var(Az + b) = E((AZ)(A%)T) = E(AZETAT) = AE(2zT)AT
= A Var(x)AT.

Proof of Var(x) = E(zzT) — E(x)E(z)": Exercise!
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Vectors and Matrices of Random Variables
Let  be m x 1 vector of random variables, ¢ be m X 1 non-zero vector of constants

@ Obviously the variance-covariance matrix of x is symmetric

@ Consider the linear combination c¢'z (this is a now a single random variable). We have
Var(ctx) = ¢ Var(x)e > 0 forall ¢ #0,,.;

@ Var(cTx) cannot be negative since it is a variance

o If Var(ctxz) = 0 then either
e one of the random variables is not actually random, or
e one of the random variables is just a multiple of the other

e one of the random variables is a linear combination of two or more of the other
random variables

ECON207 Session 4 This Version: 17 Sep 2024 71/84
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Digression on Symmetric Matrices

A m x m symmetric (and square) matrix A is positive definite if
cPAc>0 forall ¢ #0,,,,
It is positive semidefinite if c' Ac >0 for all ¢ #0,,,;. Similar definitions for negative

definiteness and negative semidefiniteness

@ Variance covariance matrices Var(z) are positive semidefinite
@ If the random variables in x are not linearly dependent, then Var(x) is positive definite

@ Another example: suppose the columns of a n x k data matrix X are linearly
independent, i.e.,

Xc#0,,,, forall ¢#0,,,
Then c?XTXe = (Xc)TXe > 0 for all ¢ # 0,1, i.e., XTX is positive definite
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Session 4.6 Principal Component Analysis
@ Eigendecomposition of symmetric matrices, without proofs
@ Application to Principal Component Analysis

No discussion of eigenvalues or eigenvectors, see readings if interested
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Eigendecomposition of Symmetric Matrices

Another very important fact about symmetric matrices (Eigendecomposition)

Every k X k symmetric matrix A can be decomposed in the following way

Ay 0 0 qi
0 Ay - 0] |gF k .
A=QAQ =gy ¢ - a) |, 7 . . 21 = N
S S 3 p
0 0 - A lg
@ )\, i=1,...,k are real numbers called eigenvalues (usually ranked A\; > Ay > --- > \;)
@ The k x 1 vectors q;, ¢ = 1, ..., k are the corresponding eigenvectors

@ ( satisfies the property QTQ = I,

(see BPT Chapter 10)
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Sample Variance-Covariance Matrix
Let X be a n x k data matrix, each column contains n observations of some variable,

mean removed. Then

L1 — Ty Tig — Ty Lig — Lk L1 Lig v Ty
x = [P21 =% Loz — Xy v Lo g f o1 Lop vt Tog
Lp1 — &1 Lpg — Lo 0 Tpp — Lg LTp1 Lp2 o Tnk
and XTX is the symmetric sample variance-covariance matrix
n J—
1 n ~92 1 n ~ ~ 1 n ~ ~
n1 Zi:l Ti1 n1 Ziz& Ti1Tiz " [ Z%zl Ti1Tik
1 LN EE, Ly g2 e 1 Tools
XTX = | n—1 £uj=1"i2"il n—1 Laj=1 "2 n—1 ZLaij=1 *i2%ik

1 §n o 22
nflzizlwik

This Version: 17 Sep 2024

n—1 : :
1 n.o o~ ~ 1 n ~ ~
n—1 Zizl TikTil p7—1 Zizl TikTio
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Principal Components

Apply eigendecomposition to the sample variance-covariance matrix

1 SXTX = QAQ"

n —

Construct the following data matrix
Y=XQ=X[g, @
Each n x 1 vector X¢q;, ¢ =1, ...,k is an “index variable” formed by a linear

combination of the & X variables

0] = [Xan Xqo ... Xq,]

q1;

Xg; =[X. X X (]21 = 1 X+ @2 Xap 0+ 4 Xy,

A

This Version: 17 Sep 2024
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Principal Component Analysis

The sample variance-covariance matrix of Y is

1
n—1

YIY = —QTXTXQ = Q7 (5 XTX ) @ = QTQAQTQ = A

n—1
That is, the n x k£ matrix Y contain observations of k£ uncorrelated variables

@ first column has obs. of the first index variable, which has the greatest variance
@ second column has obs. of the second index variable, which has the second highest
variance

These index variables are called principal components

Often first two or three indexes account for most of the variance in the data —
dimension reduction
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Principal Component Analysis

causes-of-death-by-state.csv

@ 51 x 14 data matrix

@ age-adjusted number of deaths per 100,000, all races, both sexes, all ages, over the
period 2016-2020

@ across the 51 US states plus District of Columbia (rows)

@ 14 causes of death (columns): accidents & adverse effects (accident), Alzheimer's
disease (Alzheimers), cancer, cerebrovascular diseases (cerebrovascular), chronic lower
respiratory disease (respiratory), chronic liver disease & cirrhosis (liver), diabetes mellitus
(diabetes), heart disease (heart), homicide & legal intervention (homicide), influenza,
kidney disease - nephritis & nephrosis (kidney), pneumonia, septicemia, suicide &
self-inflicted injury (suicide).

Qn: How do states differ by cause of death?
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Principal Component Analysis

library(tidyverse)

library(ggrepel)

df <- read.csv("data/causes-of-death-by-state.csv")
row.names (df) <- df[,1]

df <- df[,-1]

head(df, 4) # Show data for first four states

Accident Alzheimers Cancer Cerebrovascular Respiratory Liver Diabetes

Alabama 55.2 46.1 166.9 51.8 56.0 13.6 20.5
Alaska 62.3 26.0 146.8 37.1 35.0 16.7 19.7
Arizona 58.6 33.8 132.3 30.9 40.2 14.9 23.9
Arkansas 51.6 40.9 169.7 42.9 61.6 12.7 30.8
Heart Homicide Influenza Kidney Pneumonia Septicemia Suicide
Alabama 225.1 12.9 1.5 16.9 17.0 17.0 16.2
Alaska  136.1 9.4 2.1 10.0 8.2 8.3 26.5
Arizona 139.1 6.7 1.6 7.1 9.4 4.8 18.2
Arkansas 222.2 10.4 2.2 18.6 15.7 12.9 18.9
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Principal Component Analysis

# Importance of each PC

dfs <- scale(df, scale=FALSE) # remove the mean but don't standardize
dfpcal <- prcomp(dfs)

summary (dfpcal)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 32.8587 12.5414 9.57876 7.44281 6.38255 4.53854 3.63309
Proportion of Variance 0.7258 0.1057 0.06168 0.03724 0.02738 0.01385 0.00887
Cumulative Proportion  0.7258 0.8315 0.89319 0.93043 0.95781 0.97166 0.98053

PC8 PC9 PC10 PC11 PC12 PC13 PC14
Standard deviation 2.89666 2.50515 2.28355 2.17946 1.54667 1.37289 0.24006
Proportion of Variance 0.00564 0.00422 0.00351 0.00319 0.00161 0.00127 0.00004
Cumulative Proportion 0.98617 0.99039 0.99389 0.99709 0.99869 0.99996 1.00000
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Principal Component Analysis

# Cause of Death Loading for First Two PCs
pcland2 <- as.data.frame(dfpcal$x[,1:2]) # Collect first two PCs into a data fram

loadingsland2 <- data.frame(xstart = O, # A data frame containing the
ystart = 0, # loadings (weights) placed on each
PC1 = dfpcal$rotation[,1], # cause of death in the first two
PC2 = dfpcal$rotation[,2]) # principal components

pl <- ggplot(loadingsiand2,
aes(x = xstart, y = ystart, xend = PC1, yend = PC2)) +
geom_segment (arrow = arrow(length=unit(0.1, "inches"))) + ylab("PC2") + xlab("PC1") +
annotate("text", x=loadingsland2$PC1l, y=loadingsland2$PC2+0.04,
label=rownames(loadingsland2), size=4) +
theme_bw ()
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Principal Component Analysis

081 Accident
044 i
Cancer Respiratory

N
O
a

0.0

-0.44
-075 0,50 025 0.00
PC1
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Principal Component Analysis

# Each States PC1 and PC2 scores
ggplot(as.data.frame(pcland2), aes(PC1l, PC2, label = rownames(pcland2))) +
geom_point() + geom_text_repel(size=4, box.padding = 0.1) + theme_bw()
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(Previous) Session 1: Statistics Review
(Previous) Session 2: Simple Linear Regression
(Previous) Session 3: Estimator Standard Errors; Multiple Linear Regression
This Session 4: Matrix Algebra

Next Session 5: OLS using Matrix Algebra
Session 6: Hypothesis Testing

Session 7: Prediction

Session 8: Instrumental Variable Regression
Session 9: Logistic and Other Regressions
Session 10: Panel Data Regressions

Session 11: Introduction to Time Series
Session 12: Time Series Regressions
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