ECON207 Session 4: Review Exercise

AY2024/25 Term 1

Question 1 Let X be a $n \times k$ data matrix where each column contains the n observations of a variable. Let i_n be a $n \times 1$ vector of 1s, i.e., $i_n^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$. Let M_0 be the matrix

$$M_0=I_n-i_n(i_n^{\rm T}i_n)^{-1}i_n^{\rm T}$$

- a. How does M_0 transform the $n \times 1$ vector y when y is pre-multiplied by M_0 ?
- b. Describe how M_0 transforms X when X is pre-multiplied by M_0 .
- c. Show that M_0 is symmetric and satisfies the property $M_0M_0 = M_0$.

d. Show that $X^{\mathrm{T}} M_0^{\mathrm{T}} M_0 X = X^{\mathrm{T}} M_0 X$ and describe the contents of the matrix

$$\frac{1}{n-1}X^{\mathrm{T}}M_0X.$$

Question 2 (a) Show that the inverse of a symmetric non-singular matrix is symmetric. (*Hint: Use the fact that* $(A^{T})^{-1} = (A^{-1})^{T}$ which we proved in class.)

(b) Suppose X is $n \times k$ with n > k, such that $X^{T}X$ is non-singular. Show that $(X^{T}X)^{-1}$ is symmetric.

Question 3 Suppose x is a $n \times 1$ vector of random variables such that E(x) and $E(xx^{T})$ exists. Show that $Var(x) = E(xx^{T}) - E(x)E(x)^{T}$.