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Session 2

Deep dive into the Simple Linear Regression (SLR) model and Ordinary Least
Squares (OLS) estimation methodology
Specific example: to estimate the relationship between hourly earnings and years of
schooling

Interested in explaining how hourly earnings vary with years of schooling
focus is on variation in hourly earnings and
the extent to which years of schooling explains variation in hourly earnings

Population of interest: US non-institutional employed civilians aged 16 & above in
2018
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Session 2

You have a random sample of 𝑛 = 4946 individuals from that population
library(tidyverse) # packages for data wrangling and plotting
library(patchwork) # ... for composing plots
library(latex2exp) # ... for LaTeX (math) annotations in plots
dat <- read_csv("data\\earnings2019.csv", show_col_types=FALSE)
head(dat,3)

# A tibble: 3 x 11
age height educ feduc meduc tenure wexp race male earn totalwork

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
1 59 67 12 3 3 5 30 White 0 36.3 1652
2 43 63 10 4 3 7 13 White 1 6.46 1548
3 28 74 12 2 3 6 9 White 1 13.1 2460

Anthony Tay ECON207 Session 2 This Version: 31 Jul 2024 3 / 80



Agenda A Bit of Math Linear Regression Overview Simple Linear Regression Causal Interpretations? Sampling & Other Issues Roadmap

Session 2
We model our data {𝑌𝑖, 𝑋𝑖}𝑛𝑖=1 as a random sample from the population

𝑌𝑖 and 𝑋𝑖 are hourly earnings and years of schooling of individual 𝑖 respectively
Population represented by some joint probability distribution function 𝑓𝑋,𝑌 (𝑥, 𝑦)

i.e., (𝑋𝑖, 𝑌𝑖)
𝑖𝑖𝑑∼ 𝑓𝑋,𝑌 (𝑥, 𝑦)

(𝑋𝑖, 𝑌𝑖) independent of (𝑋𝑗, 𝑌𝑗), 𝑖 ≠ 𝑗 (independent across observations)
𝑋𝑖 and 𝑌𝑖 can be related to each other

Objective will be to learn something about 𝑓𝑋,𝑌 (𝑥, 𝑦)
E.g., conditional expectation (conditional mean) of 𝑌 given 𝑋, 𝐸(𝑌 ∣ 𝑋)

Anthony Tay ECON207 Session 2 This Version: 31 Jul 2024 4 / 80



Agenda A Bit of Math Linear Regression Overview Simple Linear Regression Causal Interpretations? Sampling & Other Issues Roadmap

Session 2

Agenda for this session
A bit of math

Joint distributions, conditional expectations
A bit of optimization theory

Introduction to the simple linear regression model
Estimation via OLS
Predictive vs causal interpretations of parameters
Application to returns to schooling application
Non-technical intro first, then details
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Session 2.1

Session 2.1 Math Review

Conditional distributions and expectations
A bit of optimization theory
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Joint and Conditional Distributions
Joint Probability Distribution Function tells us the probability of obtaining various events
Consider bivariate (two variable) case

Discrete Variables: 𝑓𝑋,𝑌 (𝑥, 𝑦) = Pr(𝑋 = 𝑥, 𝑌 = 𝑦)
Continuous Variables: 𝑓𝑋,𝑌 (𝑥, 𝑦) such that

Pr(𝑎 ≤ 𝑋 ≤ 𝑏, 𝑐 ≤ 𝑌 ≤ 𝑑) = ∫
𝑏

𝑎
∫

𝑑

𝑐
𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

In our application later: 𝑒𝑎𝑟𝑛 𝑌 is “continuous” whereas 𝑒𝑑𝑢𝑐 𝑋 is discrete (not a problem)

𝑓𝑋,𝑌 (𝑥, 𝑦) where 𝑌 ∈ (0,+∞) and 𝑋 = 7, 8,… , 17

Can extend to more than two variables
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Joint and Conditional Distributions
We will take a simple, artificial, discrete example to illustrate the concepts

Random Variables 𝑋, 𝑌
with possible values
𝑥 = 1, 2, 3, 4, 5
𝑦 = 3, 3.5, 4, 4.5, 5, 5.5, 6

with Joint PDF
𝑓𝑋,𝑌 (𝑥, 𝑦) = Pr(𝑋 = 𝑥, 𝑌 = 𝑦)

6 0 0 0 0 1
20

5.5 0 0 0 1
20

2
20
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20

2
20

1
20
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2
20

1
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2
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1
20 0 0

3.5 2
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1
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3 1
20 0 0 0 0
1 2 3 4 5

𝑋
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Marginal (Unconditional) Distributions
6 0 0 0 0 1

20
5.5 0 0 0 1
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→
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4 4
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3 1
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𝑦 Pr(𝑌 = 𝑦)

→ 𝐸(𝑌 ) = 4.5
Var(𝑌 ) = 0.625

↓
𝑥 1 2 3 4 5

Pr(𝑋 = 𝑥) 4
20

4
20

4
20

4
20

4
20

→ 𝐸(𝑋) = 3,Var(𝑋) = 2
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Condition Distribution (when 𝑋 = 1)
Pr(𝑌 = 3.0 ∣ 𝑋 = 1) = 1/20

4/20 = 1
4

Pr(𝑌 = 3.5 ∣ 𝑋 = 1) = 2/20
4/20 = 1

2

Pr(𝑌 = 4.0 ∣ 𝑋 = 1) = 1/20
4/20 = 1

4

Pr(𝑌 = 4.5 ∣ 𝑋 = 1) = 0
4/20 = 0

Pr(𝑌 = 5.0 ∣ 𝑋 = 1) = 0
4/20 = 0

Pr(𝑌 = 5.5 ∣ 𝑋 = 1) = 0
4/20 = 0

Pr(𝑌 = 6.0 ∣ 𝑋 = 1) = 0
4/20 = 0

In general, we have

Pr(𝑌 = 𝑦 ∣ 𝑋 = 𝑥) = Pr(𝑌 = 𝑦,𝑋 = 𝑥)
Pr(𝑋 = 𝑥)

- or -

Pr(𝑌 = 𝑦,𝑋 = 𝑥) = Pr(𝑌 = 𝑦 ∣ 𝑋 = 𝑥)Pr(𝑋 = 𝑥)

We can write

𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥)𝑓𝑋(𝑥) = 𝑓𝑋∣𝑌 (𝑥 ∣ 𝑦)𝑓𝑌 (𝑦)
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Conditional Distribution / Expectation / Variance
Calculate for each possible value of 𝑋

6 0 0 0 0 1
4

5.5 0 0 0 1
4

1
2

5 0 0 1
4

1
2

1
4

𝑌 4.5 0 1
4

1
2

1
4 0

4 1
4

1
2

1
4 0 0

3.5 1
2

1
4 0 0 0

3 1
4 0 0 0 0
1 2 3 4 5

𝑋

→
𝑋 1 2 3 4 5

𝐸(𝑌 ∣ 𝑋) 3.5 4 4.5 5 5.5
Var(𝑌 ∣ 𝑋) 0.125 0.125 0.125 0.125 0.125

In this example, 𝐸(𝑌 ∣ 𝑋) varies with 𝑋, Var(𝑌 ∣ 𝑋) is constant for all 𝑋
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Conditional Distributions / Expectation / Variance
For 𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠 and 𝑒𝑑𝑢𝑐 sample
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Suggests
𝑌 |𝑋 ∼ Log-normal(𝜇, 𝜎2)?
ln𝑌 |𝑋 ∼ Normal(𝜇, 𝜎2)?
Does 𝜇 and/or 𝜎2 depend on 𝑋?
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Conditional Expectations

For continuous random variables 𝑋,𝑌 with joint pdf 𝑓𝑋,𝑌 (𝑥, 𝑦) we have

𝑓𝑋(𝑥) = ∫𝑌 𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑦 and 𝑓𝑌 (𝑦) = ∫𝑋 𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑥

𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥)𝑓𝑋(𝑥) = 𝑓𝑋|𝑌 (𝑥 ∣ 𝑦)𝑓𝑋(𝑦)

𝐸(𝑌 ∣ 𝑋 = 𝑥) = ∫𝑌 𝑦𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥) 𝑑𝑦

Var(𝑌 ∣ 𝑋 = 𝑥) = ∫𝑌 (𝑦 − 𝐸𝑌 ∣𝑋(𝑌 ))2𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥) 𝑑𝑦
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Conditional Expectations

Manipulating Conditional Expectations (and Conditional Variances)
Treat conditioning information as fixed

Examples:
𝐸(𝑎𝑋𝑌 ∣ 𝑋) = 𝑎𝑋𝐸(𝑌 ∣ 𝑋)
Var(𝑎𝑋𝑌 ∣ 𝑋) = 𝑎2𝑋2Var(𝑌 ∣ 𝑋)
Var(𝑎𝑋 ∣ 𝑋) = 0 (cf. Var(𝑎𝑋) = 𝑎2Var(𝑋))
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Law of Iterated Expectations

Returning to our example, and “reinstating” the randomness in 𝑋
𝑋 = 𝑥 1 2 3 4 5

𝐸(𝑌 ∣ 𝑋 = 𝑥) 3.5 4 4.5 5 5.5
Pr(𝑋 = 𝑥) 0.2 0.2 0.2 0.2 0.2

𝐸(𝑌 ∣ 𝑋) is a function of 𝑋
Because 𝑋 is a random variable, so is 𝐸(𝑌 ∣ 𝑋)

Here 𝐸(𝑌 ∣ 𝑋) is uniformly distributed over 3.5, 4.0, 4.5, 5.0, 5.5
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Law of Iterated Expectations
Can compute mean and variance of 𝐸(𝑌 ∣ 𝑋):

𝐸𝑋(𝐸𝑌 ∣𝑋(𝑌 ∣ 𝑋)) = 3.5(0.2) + 4.0(0.2) + ⋯ + 5.5(0.2) = 4.5
Var𝑋(𝐸𝑌 ∣𝑋(𝑌 ∣ 𝑋)) = ? (Exercise)

Recall 𝐸𝑌 (𝑌 ) = 4.5
Not a coincidence that 𝐸(𝑌 ) is the same as 𝐸𝑋(𝐸𝑌 ∣𝑋(𝑌 ∣ 𝑋))

Law of Iterated Expectations

𝐸𝑌 (𝑌 ) = 𝐸𝑋(𝐸𝑌 ∣𝑋(𝑌 ∣ 𝑋))

Anthony Tay ECON207 Session 2 This Version: 31 Jul 2024 16 / 80



Agenda A Bit of Math Linear Regression Overview Simple Linear Regression Causal Interpretations? Sampling & Other Issues Roadmap

Law of Iterated Expectations

Special case of 𝐸𝑋,𝑌 (𝑔(𝑋, 𝑌 )) = 𝐸𝑋(𝐸𝑌 ∣𝑋(𝑔(𝑋, 𝑌 )))

𝐸𝑋,𝑌 (𝑔(𝑋, 𝑌 )) = ∫
𝑋
∫
𝑌
𝑔(𝑥, 𝑦)𝑓𝑋,𝑌 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

= ∫
𝑋
∫
𝑌
𝑔(𝑥, 𝑦)𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥)𝑓𝑋(𝑥) 𝑑𝑦 𝑑𝑥

= ∫
𝑋
(∫

𝑌
𝑔(𝑥, 𝑦)𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥) 𝑑𝑦) 𝑓𝑋(𝑥) 𝑑𝑥

= 𝐸𝑋 (𝐸𝑌 ∣𝑋(𝑔(𝑋, 𝑌 ) ∣ 𝑋))

If 𝑔(𝑋, 𝑌 ) = 𝑌 , we get the law of iterated expectations
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Law of Iterated Expectations

Implications of Law of Iterated Expectations
If 𝐸(𝑌 ∣ 𝑋) = 𝑐, then (a) 𝐸(𝑌 ) = 𝑐, (b) Cov(𝑋, 𝑌 ) = 0

If 𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋, then (c) 𝛽0 = 𝐸(𝑌 ) − 𝛽1𝐸(𝑋), (d) 𝛽1 = Cov(𝑋, 𝑌 )
Var(𝑋)

Proof: If 𝐸(𝑌 ∣ 𝑋) = 𝑐, then

(a) 𝐸(𝑌 ) = 𝐸(𝐸(𝑌 |𝑋)) = 𝐸(𝑐) = 𝑐
(b) Cov(𝑋,𝑌 ) = 𝐸(𝑌𝑋) −𝐸(𝑌 )𝐸(𝑋) = 𝐸(𝑋𝐸(𝑌 ∣ 𝑋)) − 𝑐𝐸(𝑋) = 𝑐𝐸(𝑋) − 𝑐𝐸(𝑋) = 0
If 𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋, then

(c) 𝐸(𝑌 ) = 𝐸(𝐸(𝑌 |𝑋)) = 𝐸(𝛽0 + 𝛽1𝑋) = 𝛽0 + 𝛽1𝐸(𝑋)
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Law of Iterated Expectations

(d) We have

𝐸(𝑌𝑋) = 𝐸(𝐸(𝑌 𝑋 ∣ 𝑋)) = 𝐸(𝑋𝐸(𝑌 ∣ 𝑋)) = 𝐸(𝑋(𝛽0 + 𝛽1𝑋))
= 𝛽0𝐸(𝑋) + 𝛽1𝐸(𝑋2)

Substituting in 𝛽0 = 𝐸(𝑌 ) − 𝛽1𝐸(𝑋) gives

𝐸(𝑌𝑋) = 𝐸(𝑌 )𝐸(𝑋) − 𝛽1𝐸(𝑋)2 + 𝛽1𝐸(𝑋2) = 𝐸(𝑌 )𝐸(𝑋) + 𝛽1Var(𝑋)

𝛽1 = 𝐸(𝑌𝑋) − 𝐸(𝑌 )𝐸(𝑋)
Var(𝑋) = Cov(𝑋, 𝑌 )

Var(𝑋)
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Law of Iterated Expectation

Is there a law of iterated variance?
If yes, what does it look like?
We have

Var(𝑌 ) = 𝐸(Var(𝑌 ∣ 𝑋)) + Var(𝐸(𝑌 |𝑋))
Proof: exercise
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Law of Iterated Expectations
10 0 0 0 0 1

10
9 0 0 0 1

10 0
8 0 0 1

10 0 0
7 0 1

10 0 0 0
6 1

10 0 0 0 0
𝑌 5 1

10 0 0 0 0
4 0 1

10 0 0 0
3 0 0 1

10 0 0
2 0 0 0 1

10 0
1 0 0 0 0 1

10
1 2 3 4 5

𝑋

Exercise:

Find marginal distribution of 𝑋 and 𝑌
Find conditional distribution of 𝑌 given 𝑋
Find Cov(𝑋, 𝑌 )
How is cond. distribution of 𝑌 related to 𝑋?
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Law of Iterated Expectations

𝑋 and 𝑌 in exercise are uncorrelated but not independent
Two random variables are independent if

Pr(𝑌 = 𝑦 ∣ 𝑋 = 𝑥) = Pr(𝑌 = 𝑦) for all 𝑥 and 𝑦

or
Pr(𝑌 = 𝑦,𝑋 = 𝑥) = Pr(𝑌 = 𝑦)Pr(𝑋 = 𝑥) for all 𝑥 and 𝑦

For continuous rv: 𝑓𝑌 ∣𝑋(𝑦 ∣ 𝑥) = 𝑓𝑌 (𝑦) or 𝑓𝑌 ,𝑋(𝑦, 𝑥) = 𝑓𝑌 (𝑦)𝑓𝑋(𝑥)
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Independent Random Variables
Suppose 𝑌 and 𝑋 have the following joint pdf:

5 0.01 0.04 0.03 0.01 0.01
4 0.02 0.08 0.06 0.02 0.02

𝑌 3 0.04 0.16 0.12 0.04 0.04
2 0.02 0.08 0.06 0.02 0.02
1 0.01 0.04 0.03 0.01 0.01

1 2 3 4 5
𝑋

Independent? Identically Distributed?
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A Little Optimization Theory
Given 𝑓(𝑥), find 𝑥∗ such that 𝑓(𝑥∗) is max or min
Given 𝑓(𝑥, 𝑦), find (𝑥∗, 𝑦∗) such that 𝑓(𝑥∗, 𝑦∗) is max or min

Presume you know differentiation and partial differentiation, e.g.,

𝑓(𝑥) = 𝑥2 ⇒ 𝑓 ′(𝑥) = 2𝑥 (if 𝑦 = 𝑓(𝑥), we can write 𝑓 ′(𝑥) as 𝑑𝑦
𝑑𝑥)

𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2𝑦3 ⇒ 𝜕𝑧
𝜕𝑥 = 2𝑥𝑦3 and 𝜕𝑧

𝜕𝑦 = 3𝑥2𝑦2

𝜕𝑧
𝜕𝑥 : how 𝑧 changes with 𝑥, holding 𝑦 fixed 𝜕𝑧

𝜕𝑦 : how 𝑧 changes with 𝑦, holding 𝑥 fixed
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A Little Optimization Theory
𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2𝑦3

First partial derivatives: 𝜕𝑧
𝜕𝑥 = 2𝑥𝑦3 , 𝜕𝑧

𝜕𝑦 = 3𝑥2𝑦2

Second partial derivatives:

𝜕2𝑧
𝜕𝑥2 = 𝜕

𝜕𝑥 (𝜕𝑧
𝜕𝑥) = 2𝑦3 𝜕2𝑧

𝜕𝑦𝜕𝑥 = 𝜕
𝜕𝑦 (𝜕𝑧

𝜕𝑥) = 6𝑥𝑦2

𝜕2𝑧
𝜕𝑥𝜕𝑦 = 𝜕

𝜕𝑥 (𝜕𝑧
𝜕𝑦) = 6𝑥𝑦2 𝜕2𝑧

𝜕𝑦2 = 𝜕
𝜕𝑦 (𝜕𝑧

𝜕𝑦) = 6𝑥2𝑦

Notice that 𝜕2𝑧
𝜕𝑦𝜕𝑥 = 𝜕2𝑧

𝜕𝑥𝜕𝑦 . This is true in general (“Young’s Theorem”)
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A Little Optimization Theory
We’ll look only at the cases relevant to us

If 𝑓″(𝑥) > 0 for all 𝑥, then 𝑓 ′(𝑥∗) = 0 ⇒ 𝑥∗ minimizes 𝑓(𝑥)
If 𝑓″(𝑥) < 0 for all 𝑥, then 𝑓 ′(𝑥∗) = 0 ⇒ 𝑥∗ maximizes 𝑓(𝑥)
𝑓″(𝑥) > 0, 𝑓″(𝑥) < 0 are not necessary for 𝑓(𝑥) to have a min/max
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Two variables 𝑓(𝑥, 𝑦)
Same idea for 𝑓(𝑥, 𝑦): 𝑓 concave implies stationary pt is max, 𝑓 convex implies stationary pt is min

Stationary point: (𝑥∗, 𝑦∗) such that 𝑓′
𝑥(𝑥∗, 𝑦∗) = 0 and 𝑓′

𝑦(𝑥∗, 𝑦∗) = 0

If 𝑓(𝑥, 𝑦) is convex; stationary point is minimum point
If 𝑓(𝑥, 𝑦) is concave; stationary point is maximum point

If 𝑣2
1
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2 + 2𝑣1𝑣2
𝜕2𝑓(𝑥, 𝑦)
𝜕𝑥𝜕𝑦 + 𝑣2

2
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2 < 0 for all 𝑣1, 𝑣2 not both zero

then 𝑓(𝑥, 𝑦) is concave

If 𝑣2
1
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2 + 2𝑣1𝑣2
𝜕2𝑓(𝑥, 𝑦)
𝜕𝑥𝜕𝑦 + 𝑣2

2
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2 > 0 for all 𝑣1, 𝑣2 not both zero

then 𝑓(𝑥, 𝑦) is convex
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Two variables 𝑓(𝑥, 𝑦)
Rough explanation: let 𝑥 = 𝑥0 + 𝑣1𝑠, 𝑦 = 𝑦0 + 𝑣2𝑠, 𝑣21 + 𝑣22 = 1, and

𝑧(𝑠) = 𝑓(𝑥(𝑠), 𝑦(𝑠))

Note that 𝑧(0) = 𝑓(𝑥0, 𝑦0), 𝑑𝑥/𝑑𝑠 = 𝑣1, 𝑑𝑦/𝑑𝑥 = 𝑣2
Directional derivative at (𝑥0, 𝑦0) in direction 𝑣 = (𝑣1, 𝑣2) is

𝑑𝑧
𝑑𝑠 = 𝑓 ′

𝑥(𝑥, 𝑦)
𝑑𝑥
𝑑𝑠 + 𝑓 ′

𝑦(𝑥, 𝑦)
𝑑𝑦
𝑑𝑠 = 𝑣1𝑓 ′

𝑥(𝑥, 𝑦) + 𝑣2𝑓 ′
𝑦(𝑥, 𝑦)

(𝑥0, 𝑦0) stationary pt means slope = 0 in all directions at the point, i.e.,

𝑓 ′
𝑥(𝑥0, 𝑦0) = 0, 𝑓 ′

𝑥(𝑥0, 𝑦0) = 0 .
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Two variables 𝑓(𝑥, 𝑦)
Second directional derivative is

𝑑2𝑧
𝑑𝑠2 = 𝑓′

𝑥(𝑥, 𝑦)
𝑑𝑥
𝑑𝑠 + 𝑓′

𝑦(𝑥, 𝑦)
𝑑𝑦
𝑑𝑠

= [𝑓″
𝑥𝑥(𝑥, 𝑦)

𝑑𝑥
𝑑𝑠 + 𝑓″

𝑥𝑦(𝑥, 𝑦)
𝑑𝑦
𝑑𝑠]

𝑑𝑥
𝑑𝑠 + 𝑓′

𝑥(𝑥, 𝑦)
𝑑2𝑥
𝑑𝑠2 +

[𝑓″
𝑦𝑥(𝑥, 𝑦)

𝑑𝑥
𝑑𝑠 + 𝑓″

𝑦𝑦(𝑥, 𝑦)
𝑑𝑦
𝑑𝑠]

𝑑𝑦
𝑑𝑠 + 𝑓′

𝑦(𝑥, 𝑦)
𝑑2𝑦
𝑑𝑠2

= 𝑣2
1𝑓″

𝑥𝑥(𝑥, 𝑦) + 2𝑣1𝑣2𝑓″
𝑥𝑦(𝑥, 𝑦) + 𝑣2

2𝑓″
𝑦𝑦(𝑥, 𝑦)

since 𝑑𝑥/𝑑𝑠 = 𝑣1, 𝑑𝑦/𝑑𝑠 = 𝑣2, and 𝑑2𝑥/𝑑𝑠2 = 𝑑2𝑦/𝑑𝑠2 = 0
𝑓 convex: slope decreasing in all directions, i.e., 𝑧″(0) < 0 for all 𝑣 and for all (𝑥0, 𝑦0)
𝑓 concave: slope increasing in all directions, i.e., 𝑧″(0) > 0 for all 𝑣 and for all (𝑥0, 𝑦0)
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Two variables 𝑓(𝑥, 𝑦)

Find minimum point of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2

We have 𝑓 ′
𝑥(𝑥, 𝑦) = 2𝑥 + 𝑦 and 𝑓 ′

𝑦(𝑥, 𝑦) = 𝑦 + 2𝑦
Therefore

FOC:
𝑓 ′
𝑥(𝑥∗, 𝑦∗) = 2𝑥∗ + 𝑦∗ = 0
𝑓 ′
𝑦(𝑥∗, 𝑦∗) = 2𝑦∗ + 𝑥∗ = 0

⇒ (𝑥∗, 𝑦∗) = (0, 0) stationary point
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Two variables 𝑓(𝑥, 𝑦)

We have 𝑓″
𝑥𝑥(𝑥, 𝑦) = 2, 𝑓″

𝑥𝑦(𝑥, 𝑦) = 𝑓″
𝑦𝑥(𝑥, 𝑦) = 1 and 𝑓″

𝑦𝑦(𝑥, 𝑦) = 2, therefore

𝑣21𝑓″
𝑥𝑥(𝑥, 𝑦) + 2𝑣1𝑣2𝑓″

𝑥𝑦(𝑥, 𝑦) + 𝑣22𝑓″
𝑦𝑦(𝑥, 𝑦)

= 2(𝑣21 + 𝑣1𝑣2 + 𝑣22)
= 2[(𝑣1 + 0.5𝑣2)2 + 0.75𝑣22] > 0

for all 𝑣1, 𝑣2 not both equal to zero
The function 𝑓(𝑥, 𝑦) is convex
Therefore (𝑥∗, 𝑦∗) = (0, 0) is a minimum point of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2
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Session 2.2

Session 2.2 Linear Regression Overview

Non-technical Introduction to the Linear Regression Model
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Linear Regression Overview
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What is the relationship between earn and educ?
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Linear Regression Overview
Perhaps estimate Cov(𝑒𝑎𝑟𝑛, 𝑒𝑑𝑢𝑐)?
dat1 <- dat %>% select(c(earn, educ))
N <- nrow(dat1)
cov_yx <- cov(dat1)[1,2]
cor_yx <- cor(dat1)[1,2]
set.seed(1701) # Set random number seed for bootstrap standard errors
B <- 200; # Number of bootstrap replications
bcov <- bcor <- rep(NA, B) # To store bootstrapped covs and cors
for (b in 1:B){

bcov[b] <- cov(sample_n(dat1, N, replace=TRUE))[1,2]
bcor[b] <- cor(sample_n(dat1, N, replace=TRUE))[1,2]

}
cat("sample cov(earn, educ):", round(cov_yx,3), " s.e.:", round(sqrt(var(bcov)),3), "\n")
cat("sample cor(earn, educ):", round(cor_yx,3), " s.e.:", round(sqrt(var(bcor)),3), "\n")

sample cov(earn, educ): 17.622 s.e.: 0.736
sample cor(earn, educ): 0.321 s.e.: 0.017
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Linear Regression Overview

Positive correlation ⟶ higher earn associated with more years of educ

Another perspective: estimate 𝐸(𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐)
Tells you how earn changes with one year change in educ,
i.e., 𝐸(𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐 + 1) − 𝐸(𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐) at various levels of educ

How to estimate 𝐸(𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐)?
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Linear Regression Overview
Suppose we estimate mean earn at each level of educ

0

200

400

600

7.5 10.0 12.5 15.0 17.5

educ

ea
rn

# A tibble: 11 x 4
educ n mean_earn se_earn

<dbl> <int> <dbl> <dbl>
1 7 6 17.8 5.00
2 8 17 14.4 1.48
3 9 39 18.0 2.16
4 10 69 21.4 2.87
5 11 184 16.8 0.668
6 12 1113 21.0 0.387
7 13 411 20.8 0.623
8 14 790 24.3 0.509
9 15 270 25.1 1.01

10 16 1095 38.6 1.13
11 17 952 40.7 0.963
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Linear Regression Overview
Alternative: estimate mean ln(earn) at each level of educ 𝐸(ln 𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐 = 𝑖) for
𝑖 = 7,… , 17

0

2

4

6

7 8 9 10 11 12 13 14 15 16 17

factor(educ)

lo
g(

ea
rn

)

# A tibble: 11 x 4
educ n mean_logearn se_logearn

<dbl> <int> <dbl> <dbl>
1 7 6 2.70 0.280
2 8 17 2.57 0.118
3 9 39 2.70 0.0974
4 10 69 2.83 0.0749
5 11 184 2.68 0.0411
6 12 1113 2.88 0.0176
7 13 411 2.89 0.0261
8 14 790 3.04 0.0195
9 15 270 3.06 0.0337

10 16 1095 3.43 0.0193
11 17 952 3.52 0.0196
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Linear Regression Overview
How to interpret differences in ln𝑥2 − ln𝑥1 ?
Linear approximation of a function 𝑓(𝑥) around 𝑥 = 𝑎

𝑓(𝑥) ≈ 𝑝(𝑥) = 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) for 𝑥 near 𝑎
When 𝑓(𝑥) = ln𝑥, 𝑓 ′(𝑥) = 1/𝑥
Therefore, for all 𝑥 near 𝑥1, we have

ln𝑥 ≈ 𝑝(𝑥) = ln𝑥1 +
1
𝑥1

(𝑥 − 𝑥1)

For 𝑥2 near 𝑥1, we have ln𝑥2 − ln𝑥1 ≈ 𝑥2 − 𝑥1
𝑥1

i.e., ln𝑥2 − ln𝑥1 is approx. difference between 𝑥2 and 𝑥1 as percentage of 𝑥1
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Linear Regression Overview

Another approach: assume

𝐸(ln 𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐) = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐

Interpretation: 𝛽1 is percentage difference in mean hourly earnings comparing two
people with one year difference years of schooling
Use data to estimate 𝛽0 and 𝛽1:

𝐸(ln 𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐) = ̂𝛽0 + ̂𝛽1𝑒𝑑𝑢𝑐
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Linear Regression Overview

How to estimate 𝛽0 and 𝛽1? Maybe choose ̂𝛽0 and ̂𝛽1 to minimize
𝑛

∑
𝑖=1

(ln 𝑒𝑎𝑟𝑛𝑖 − ̂𝛽0 − ̂𝛽1𝑒𝑑𝑢𝑐𝑖)2

“Ordinary Least Squares”
Qn: Is this a good way to estimate 𝛽0 and 𝛽1? Good under what conditions? Do those
conditions hold? Are there better ways?
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Linear Regression Overview

0
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)

mdl1 <- lm(log(earn) ~ educ, data = dat)
summary(mdl1)$coefficients %>% round(4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.320 0.0575 22.9399 0
educ 0.128 0.0040 32.1700 0

We will study the math later (in detail!!)
Additional one year of schooling is
associated with additional mean hourly
earnings of around 12.8%
Statistically significant
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Linear Regression Overview

Linear regression uses a “global approach”
Uses assumption about form of conditional expectation to “tie” data together
Uses all observations to estimate two parameters
Able to give “big perspective” view of relationship between ln earn and educ

Previous approach was “local”, and estimated 11 means
Is assumption about form of conditional expectation correct? (Probably not)

Try
𝐸(ln 𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐) = 𝛽0 + 𝛽1𝑒𝑑𝑢𝑐 + 𝛽2𝑒𝑑𝑢𝑐2
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Linear Regression Overview

Choose ̂𝛽0, ̂𝛽1, ̂𝛽2 to minimize
𝑛
∑
𝑖=1

(ln 𝑒𝑎𝑟𝑛𝑖 − ̂𝛽0 − ̂𝛽1𝑒𝑑𝑢𝑐 − ̂𝛽2𝑒𝑑𝑢𝑐2)2

0
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educ
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g(

ea
rn

)

mdl1a <- lm(log(earn) ~ educ + I(educ^2), data = dat)
summary(mdl1a)$coefficients %>% round(4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.4870 0.3573 9.7607 0e+00
educ -0.1899 0.0519 -3.6600 3e-04
I(educ^2) 0.0114 0.0019 6.1455 0e+00

𝐸(ln 𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐 + 1) − 𝐸(ln 𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐)

= ̂𝛽0 + ̂𝛽1(𝑒𝑑𝑢𝑐 + 1) + ̂𝛽2(𝑒𝑑𝑢𝑐 + 1)2

− ( ̂𝛽0 + ̂𝛽1𝑒𝑑𝑢𝑐 + ̂𝛽2𝑒𝑑𝑢𝑐2)
= ̂𝛽1 + ̂𝛽2 + 2 ̂𝛽2 𝑒𝑑𝑢𝑐
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Linear Regression Overview

Qns:
Is 𝐸(ln 𝑒𝑎𝑟𝑛 ∣ 𝑒𝑑𝑢𝑐) really quadratic?

Probably not, but probably close enough. Nice “big picture” view of relationship
good Bias-Variance trade-off compared with “local approach”

Why are we estimating 𝐸(𝑌 ∣ 𝑋)?
To use educ to predict hourly earnings?

Some predictive ability but not a lot
What other factors are relevant?

To determine if variation in hourly earnings is determined by years of schooling?
To what extent can we view estimated relationship as “causal”?
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Linear Regression Overview

Consider 𝐸(ln 𝑒𝑎𝑟𝑛 ∣ ℎ𝑒𝑖𝑔ℎ𝑡), assuming 𝐸(ln 𝑒𝑎𝑟𝑛 ∣ ℎ𝑒𝑖𝑔ℎ𝑡) = 𝛽0 + 𝛽 ℎ𝑒𝑖𝑔ℎ𝑡
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)

mdl2 <- lm(log(earn) ~ height, data = dat)
summary(mdl2)$coefficients %>% round(4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2382 0.1536 8.0617 0
height 0.0284 0.0023 12.4766 0

Every additional inch in height is associated with
2.8% more hourly earnings (statistically and
economically significant)
Can we say height causes higher hourly earnings?
If “no”, then how to interpret the estimates?
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Linear Regression Overview
What if we include male in specification:

𝐸(ln 𝑒𝑎𝑟𝑛 ∣ ℎ𝑒𝑖𝑔ℎ𝑡) = 𝛽0 + 𝛽1 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝛽2 𝑚𝑎𝑙𝑒
mdl2a <- lm(log(earn) ~ height + male, data = dat)
summary(mdl2a)$coefficients %>% round(4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.8140 0.2003 9.0568 0
height 0.0191 0.0031 6.1896 0
male 0.1109 0.0248 4.4668 0

Coefficient in height now smaller
Why does including male change the coefficient (and standard error) on height?
Does coefficient of height now reflect extent of causality of height on earn?
What exactly happens when we include a new variable?
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Linear Regression Overview

A fuller specification
mdl3 <- lm(log(earn) ~ height + male + educ + I(educ^2) + wexp + age + I(age^2) + tenure, data = dat)
summary(mdl3)$coefficients %>% round(4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.7950 0.3757 2.1164 0.0344
height 0.0132 0.0026 4.9756 0.0000
male 0.1834 0.0215 8.5439 0.0000
educ -0.1553 0.0483 -3.2180 0.0013
I(educ^2) 0.0102 0.0017 5.9257 0.0000
wexp -0.0022 0.0011 -2.0137 0.0441
age 0.0621 0.0046 13.3546 0.0000
I(age^2) -0.0007 0.0001 -12.9063 0.0000
tenure 0.0147 0.0011 14.0261 0.0000

(Height still significant…)
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Session 2.3

Session 2.3 The Simple Linear Regression Model

Derive relevant formulas related to estimation of simple linear regression model
When OLS gives good estimators and when not
How to interpret fitted parameters and fitted model

Statistical Interpretation

Economic Interpretation

Predictive vs Causal Interpretation

(Next session: what happens when we include new variables)

Anthony Tay ECON207 Session 2 This Version: 31 Jul 2024 48 / 80



Agenda A Bit of Math Linear Regression Overview Simple Linear Regression Causal Interpretations? Sampling & Other Issues Roadmap

The Simple Linear Regression Model
Assumptions about population:

𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋
Assumptions about sample

{𝑋𝑖, 𝑌𝑖}𝑛𝑖=1 is a random sample from the population of interest
∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2 > 0, i.e., there is variation in the 𝑋𝑖 observations
Objective is to estimate 𝐸(𝑌 ∣ 𝑋), i.e., to obtain an empirical model

̂𝐸(𝑌 ∣ 𝑋) = ̂𝛽0 + ̂𝛽1𝑋

Will often write the empirical model as ̂𝑌 = ̂𝛽0 + ̂𝛽1𝑋
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The Simple Linear Regression Model
If we define 𝜖 = 𝑌 − 𝐸(𝑌 ∣ 𝑋) = 𝑌 − 𝛽0 − 𝛽1𝑋, we can write the model as

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖 , 𝐸(𝜖 ∣ 𝑋) = 0 and Var(𝜖 ∣ 𝑋) = 𝜎2

Note that 𝐸(𝜖 ∣ 𝑋) = 0 implies
𝐸(𝜖) = 0 and
Cov(𝜖,𝑋) = 0

The second of these is often written 𝐸(𝜖𝑋) = 0 since

Cov(𝜖,𝑋) = 0 ⇔ 𝐸(𝜖𝑋) − 𝐸(𝜖)𝐸(𝑋) = 0 ⇔ 𝐸(𝜖𝑋) = 0
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The Simple Linear Regression Model
If sample is representative of the population, then the sample satisfies

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖 , 𝑖 = 1,… , 𝑛 (”Linear Regression Model”)

𝑌𝑖 ~ “Regressand”, “Dependent Variable”, “Outcome Variable”
𝑋𝑖 ~ “Regressor”, “Independent Variable”, “Predictor”, “Feature”
𝜖𝑖 ~ “Noise” or “Error” term
𝛽1 is the slope coefficient or simply “coefficient” on 𝑋𝑖

𝛽0 is the (y-) intercept term or “constant” term
In Machine Learning, 𝛽0 is called the “bias”. We will not use that terminology here.
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The Simple Linear Regression Model

The assumptions imply

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖 , 𝑖 = 1,… , 𝑛

𝐸(𝜖𝑖 ∣ 𝑋1, 𝑋2,… ,𝑋𝑛) = 0 for all 𝑖 = 1,… , 𝑛
𝐸(𝜖𝑖𝜖𝑗 ∣ 𝑋1, 𝑋2,… ,𝑋𝑛) = 0 for all 𝑖, 𝑗 = 1,… , 𝑛, 𝑖 ≠ 𝑗

The first comes from 𝐸(𝜖 ∣ 𝑋) = 0 and the iid assumption.
The second comes from the iid assumption.
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Estimation by Ordinary Least Squares

Given any potential estimator ̂𝛽0 and ̂𝛽1, define

Fitted values: ̂𝑌𝑖 = ̂𝛽0 + ̂𝛽0𝑋𝑖

Residuals: ̂𝜖𝑖 = 𝑌𝑖 − ̂𝑌𝑖 = 𝑌𝑖 − ̂𝛽0 − ̂𝛽0𝑋𝑖

Sum of Squared Residuals (SSR): ∑𝑛
𝑖=1 ̂𝜖2𝑖 = ∑𝑛

𝑖=1(𝑌𝑖 − ̂𝛽0 − ̂𝛽0𝑋𝑖)2

OLS : ̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1 = arg min
̂𝛽0, ̂𝛽1

𝑛
∑
𝑖=1

(𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖)2
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Ordinary Least Squares

Ŷ = β̂0 + β̂1X

ε̂4

0

5

10

15

0.0 2.5 5.0 7.5 10.0
X

Y,
 Ŷ

data in ols01.csv
# A tibble: 10 x 2

X Y
<dbl> <dbl>

1 2.51 7.64
2 5.17 10.7
3 1.73 3.11
4 3.42 1.85
5 4.03 11.8
6 4.58 10.6
7 8.19 15.5
8 6.59 9.63
9 8.72 13.7

10 6.06 11.8
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Ordinary Least Squares
First-Order Condition:

(1) 𝜕𝑆𝑆𝑅
𝜕 ̂𝛽0

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1

= −2
𝑛
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖) = 0

(2) 𝜕𝑆𝑆𝑅
𝜕 ̂𝛽1

∣
̂𝛽𝑜𝑙𝑠
0 , ̂𝛽𝑜𝑙𝑠

1

= −2
𝑛
∑
𝑖=1

(𝑌𝑖 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖)𝑋𝑖 = 0

Solving gives
̂𝛽𝑜𝑙𝑠
0 = 𝑌 − ̂𝛽𝑜𝑙𝑠

1 𝑋

̂𝛽𝑜𝑙𝑠
1 = ∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )𝑋𝑖
∑𝑛

𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖
= ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )
∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2
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Ordinary Least Squares (Details)

(1) ⇒
𝑛
∑
𝑖=1

𝑌𝑖−𝑛 ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1

𝑛
∑
𝑖=1

𝑋𝑖 = 0 ⇒ 𝑌 − ̂𝛽𝑜𝑙𝑠
0 − ̂𝛽𝑜𝑙𝑠

1 𝑋 = 0 ⇒ ̂𝛽𝑜𝑙𝑠
0 = 𝑌 − ̂𝛽𝑜𝑙𝑠

1 𝑋

Substitute ̂𝛽𝑜𝑙𝑠
0 into (2), we have

𝑛
∑
𝑖=1

(𝑌𝑖 − (𝑌 − ̂𝛽𝑜𝑙𝑠
1 𝑋) − ̂𝛽𝑜𝑙𝑠

1 𝑋𝑖)𝑋𝑖 = 0

𝑛
∑
𝑖=1

[(𝑌𝑖 − 𝑌 ) − ̂𝛽𝑜𝑙𝑠
1 (𝑋𝑖 −𝑋)]𝑋𝑖 = 0

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )𝑋𝑖 − ̂𝛽𝑜𝑙𝑠
1

𝑛
∑
𝑖=1

(𝑋𝑖 −𝑋)𝑋𝑖 = 0 ⇒ ̂𝛽𝑜𝑙𝑠
1 = ∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )𝑋𝑖
∑𝑛

𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖
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Ordinary Least Squares (Details)
Does the second-order condition hold for minimization problem? (i.e., is SSR convex in ̂𝛽0 and ̂𝛽1?)

We have 𝜕2𝑆𝑆𝑅
𝜕 ̂𝛽2

0
= 2𝑛, 𝜕2𝑆𝑆𝑅

𝜕 ̂𝛽2
1

= 2
𝑛
∑
𝑖=1

𝑋2
𝑖 , 𝜕2𝑆𝑆𝑅

𝜕 ̂𝛽0 𝜕 ̂𝛽1
= 2

𝑛
∑
𝑖=1

𝑋𝑖

𝑣2
1 (𝜕2𝑆𝑆𝑅

𝜕 ̂𝛽2
0

)+ 2𝑣1𝑣2 ( 𝜕2𝑆𝑆𝑅
𝜕 ̂𝛽0 𝜕 ̂𝛽1

)+ 𝑣2
2 (𝜕2𝑆𝑆𝑅

𝜕 ̂𝛽2
1

)

= 2(𝑣2
1𝑛+ 2𝑣1𝑣2

𝑛
∑
𝑖=1

𝑋𝑖 + 𝑣2
2

𝑛
∑
𝑖=1

𝑋2
𝑖)

= 2𝑛(𝑣2
1 + 2𝑣1𝑣2𝑋 + 𝑣2

2
1
𝑛

𝑛
∑
𝑖=1

𝑋2
𝑖)

= 2𝑛[(𝑣1 + 𝑣2𝑋)2 − 𝑣2
2𝑋

2 + 𝑣2
2
1
𝑛

𝑛
∑
𝑖=1

𝑋2
𝑖]

= 2𝑛[(𝑣1 + 𝑣2𝑋)2 + 𝑣2
2 (1

𝑛
𝑛
∑
𝑖=1

𝑋2
𝑖 −𝑋2)] > 0 for all 𝑣1, 𝑣2 not both zero
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Ordinary Least Squares

The estimated model (the “Sample Regression Line”) is

̂𝑌 = ̂𝛽𝑜𝑙𝑠
0 + ̂𝛽𝑜𝑙𝑠

1 𝑋

The OLS fitted values are: ̂𝑌 𝑜𝑙𝑠
𝑖 = ̂𝛽𝑜𝑙𝑠

0 + ̂𝛽𝑜𝑙𝑠
1 𝑋𝑖, 𝑖 = 1,… , 𝑛

The OLS residuals are ̂𝜖𝑜𝑙𝑠𝑖 = 𝑌𝑖 − ̂𝑌 𝑜𝑙𝑠
𝑖 = 𝑌𝑖 − ̂𝛽𝑜𝑙𝑠

0 − ̂𝛽𝑜𝑙𝑠
1 𝑋𝑖, 𝑖 = 1,… , 𝑛

(We’ll discuss estimator standard errors and other associated statistics in the next class)

For now: Are ̂𝛽𝑜𝑙𝑠
0 and ̂𝛽𝑜𝑙𝑠

1 good estimators for 𝛽0 and 𝛽1?
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Unbiasedness of OLS Estimator
(Focus on 𝛽1) First rewrite ̂𝛽𝑜𝑙𝑠

1 as

̂𝛽𝑜𝑙𝑠
1 = ∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )𝑋𝑖
∑𝑛

𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖
= ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)𝑌𝑖
∑𝑛

𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖
= ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)(𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖)
∑𝑛

𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖

= 𝛽0 ∑𝑛
𝑖=1(𝑋𝑖 −𝑋) + 𝛽1 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖 +∑𝑛
𝑖=1(𝑋𝑖 −𝑋)𝜖𝑖)

∑𝑛
𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖

= 𝛽1 + ∑𝑛
𝑖=1(𝑋𝑖 −𝑋)𝜖𝑖

∑𝑛
𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖

Then 𝐸( ̂𝛽𝑜𝑙𝑠
1 ∣ 𝑋1,… ,𝑋𝑛) = 𝛽1 + ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)𝐸(𝜖𝑖 ∣ 𝑋1,… ,𝑋𝑛)
∑𝑛

𝑖=1(𝑋𝑖 −𝑋)𝑋𝑖
= 𝛽1
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Unbiasedness
It follows that 𝐸( ̂𝛽𝑜𝑙𝑠

1 ) = 𝛽1

Intuition: population and sample parallels
𝐸(𝜖 ∣ 𝑋) = 0 implies

𝐸(𝜖) = 0
𝐸(𝜖𝑋) = 0

𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋 implies

𝛽0 = 𝐸(𝑌 ) − 𝛽1𝐸(𝑋)

𝛽1 = Cov(𝑋, 𝑌 )
Var(𝑋)

FOC can be written as

∑𝑛
𝑖=1 ̂𝜖𝑜𝑙𝑠𝑖 = 0 or (1/𝑛)∑𝑛

𝑖=1 ̂𝜖𝑜𝑙𝑠𝑖 = ̂𝜖𝑜𝑙𝑠 = 0

∑𝑛
𝑖=1 ̂𝜖𝑜𝑙𝑠𝑖 𝑋𝑖 = 0

OLS estimators are
̂𝛽𝑜𝑙𝑠
0 = 𝑌 − ̂𝛽𝑜𝑙𝑠

1 𝑋
̂𝛽𝑜𝑙𝑠
1 = ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )
∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2 = 𝑠𝑚𝑝𝑙.𝐶𝑜𝑣(𝑋𝑖, 𝑌𝑖)
𝑠𝑚𝑝𝑙.𝑉 𝑎𝑟(𝑋𝑖)
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Consistency
̂𝛽𝑜𝑙𝑠
1 is also consistent for 𝛽1

Rough argument 1:

̂𝛽𝑜𝑙𝑠
1 = ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )
∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2 =
1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )
1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2

Appealing to LLN:
Numerator in second term converges in probability to population Cov(𝑋, 𝑌 )
Denominator in second term converges in probability to population Var(𝑋)

̂𝛽𝑜𝑙𝑠
1 =

1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )
1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2
𝑝

⟶ Cov(𝑋, 𝑌 )
Var(𝑋) = 𝛽1
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Consistency
Rough argument 2:

̂𝛽𝑜𝑙𝑠
1 = ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )
∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2 = 𝛽1 + ∑𝑛
𝑖=1(𝑋𝑖 −𝑋)𝜖𝑖

∑𝑛
𝑖=1(𝑋𝑖 −𝑋)2 = 𝛽1 +

1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)𝜖𝑖
1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2

Numerator in second term converges in probability to population Cov(𝑋, 𝜖)
Denominator in second term converges in probability to population Var(𝑋)

If population Cov(𝑋, 𝜖) = 0 and population Var(𝑋) ≠ 0, then

̂𝛽𝑜𝑙𝑠
1 = 𝛽1 +

1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)𝜖𝑖
1
𝑛 ∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2
𝑝

⟶ 𝛽1 + Cov(𝑋, 𝜖)
Var(𝑋) = 𝛽1
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Session 2.4

Session 2.4 Causal Interpretations?

When can you give causal interpretation to 𝛽1?
Do you only have a predictive relationship?

Anthony Tay ECON207 Session 2 This Version: 31 Jul 2024 63 / 80



Agenda A Bit of Math Linear Regression Overview Simple Linear Regression Causal Interpretations? Sampling & Other Issues Roadmap

Causal Interpretations?
If

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖, 𝐸(𝜖 ∣ 𝑋) = 0 (or equivalently, 𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋)
and you have a representative iid sample from the population
and you estimate 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖 using OLS

Then
̂𝛽𝑜𝑙𝑠
0 and ̂𝛽𝑜𝑙𝑠

1 are unbiased and consistent for 𝛽0 and 𝛽1

The empirical model ̂𝑌 = ̂𝛽𝑜𝑙𝑠
0 + ̂𝛽𝑜𝑙𝑠

1 𝑋 is unbiased and consistent for 𝐸(𝑌 ∣ 𝑋)
Question: Can we interpret 𝛽1 as representing the “causal effect” of 𝑋 on 𝑌 ? And can
we regard ̂𝛽𝑜𝑙𝑠

1 as an unbiased and consistent estimate of this causal effect?
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Causal Interpretations?

𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋 ⇒ 𝛽1 = Cov(𝑋, 𝑌 )
Var(𝑋)

̂𝛽𝑜𝑙𝑠
1 ultimately estimates a correlation

Predictive relationship
“Correlation is not Causation”

What do we mean by causal effect?
Effect of 𝑋 on 𝑌 holding everything else “fixed” (a bit strong!)
Effect on 𝑌 of variation in 𝑋 that are uncorrelated with other factors affecting 𝑌
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Example 1: Omitted Variables
Suppose causal relationship among 𝑌 , 𝑋 and 𝑍 are

𝑌 = 𝛼0 + 𝛼1𝑋 + 𝛼2𝑍 + 𝑢 , 𝑢 ∼ Normal(0, 𝜎2
𝑢)

𝑍 = 𝑋 + 𝑣 , 𝑣 ∼ Normal(0, 𝜎2
𝑣)

where 𝑋 and the noise terms 𝑢 and 𝑣 are independent “exogenous” variables. Then

𝐸(𝑌 ∣ 𝑋) = 𝛼0 + 𝛼1𝑋 + 𝛼2𝐸(𝑍 ∣ 𝑋) + 𝐸(𝑢 ∣ 𝑋) = 𝛼0 + (𝛼1 + 𝛼2)𝑋

In the regression model 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖, ̂𝛽𝑜𝑙𝑠
1 will be unbiased and consistent for

𝛼1 + 𝛼2, not 𝛼1.
Estimates total effect of 𝑋 on 𝑌
𝛼1 is effect of 𝑋 on 𝑌 “controlling for 𝑍”
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Example 1: Omitted Variables

Another way to look at it:
If we write 𝑌 = 𝛼0 + 𝛼1𝑋 + 𝜖, (i.e., 𝜖 = 𝛼2𝑍 + 𝑢), then 𝐸(𝜖 ∣ 𝑋) = 0 does not hold:

𝐸(𝜖 ∣ 𝑋) = 𝐸(𝛼2𝑍 + 𝑢 ∣ 𝑋) = 𝐸(𝛼2𝑋 + 𝛼2𝑣 + 𝑢 ∣ 𝑋) = 𝛼2𝑋

𝜖 and 𝑋 are correlated because 𝑍 is subsumed in 𝜖, and 𝑍 is correlated with 𝑋
̂𝛽𝑜𝑙𝑠
1 will be biased for 𝛼1

bias will be in the direction that makes 𝐸(𝜖 ∣ 𝑋) = 0
In the reg. eq. 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖, 𝑍𝑖 is an “omitted variable”
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Example 2: Omitted Variables

Suppose “true causal relationship” between 𝑌 , 𝑋 and 𝑍 is

𝑌 = 𝛼0 + 𝛼1𝑋 + 𝛼2𝑍 + 𝑢 , 𝑢 ∼ Normal(0, 𝜎2
𝑢)

𝑋 = 𝑍 + 𝑣 , 𝑣 ∼ Normal(0, 𝜎2
𝑣)

Assume 𝑍, 𝑢, 𝑣 all independent exogenous variables, with 𝑍 ∼ Normal(0, 𝜎2
𝑧)

To take an extreme case, suppose 𝛼1 = 0. Then
𝑋 does not “cause” 𝑌
𝑍 drives both 𝑌 and 𝑋
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Example 2: Omitted Variables
What is 𝐸(𝑌 ∣ 𝑋)?

We have 𝐸(𝑌 ∣ 𝑋) = 𝛼0 + 𝛼1𝑋 + 𝛼2𝐸(𝑍 ∣ 𝑋)

It can be shown that 𝐸(𝑍 ∣ 𝑋) = 𝜎2
𝑧

𝜎2𝑧 + 𝜎2𝑢
𝑋

𝐸(𝑍 ∣ 𝑋) is linear, i.e.,
𝐸(𝑍 ∣ 𝑋) = 𝛿0 + 𝛿1𝑋 where 𝛿0 = 𝐸(𝑌 ) − 𝛿1𝐸(𝑋) and 𝛿1 = Cov(𝑋,𝑍)

Var(𝑋)
Cov(𝑋,𝑍) = 𝐸(𝑋𝑍) = 𝐸(𝑍2) = Var(𝑍) = 𝜎2

𝑧
Var(𝑋) = Var(𝑍) + Var(𝑢) = 𝜎2

𝑧 + 𝜎2
𝑢

Therefore 𝐸(𝑌 ∣ 𝑋) = 𝛼0 + 𝛼1𝑋 + 𝛼2𝐸(𝑍 ∣ 𝑋) = 𝛼0 +(𝛼1 +
𝛼2𝜎2

𝑧
𝜎2𝑧 + 𝜎2𝑢

)𝑋
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Example 2: Omitted Variables

In the regression model 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖, ̂𝛽𝑜𝑙𝑠
1 will be unbiased and consistent for

(𝛼1 +
𝛼2𝜎2

𝑧
𝜎2𝑧 + 𝜎2𝑢

), not 𝛼1

If we define 𝜖 so that 𝑌 = 𝛼0 + 𝛼1𝑋 + 𝜖, then 𝐸(𝜖 ∣ 𝑋) = 0 does not hold
𝜖 subsumes 𝑍, which is correlated with 𝑋
𝜖 and 𝑋 are correlated
̂𝛽1 will be biased for 𝛼1 in a direction that makes 𝐸(𝜖 ∣ 𝑋) = 0

Again, in reg. eq. 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖, 𝑍𝑖 is an “omitted variable”
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Example 3: Simultaneity Bias

Suppose the following describes the market for a good

𝑄𝑑
𝑡 = 𝛿0 + 𝛿1𝑃𝑡 + 𝜖𝑑𝑡 (Demand Eq 𝛿1 < 0)

𝑄𝑠
𝑡 = 𝛼0 + 𝛼1𝑃𝑡 + 𝜖𝑠𝑡 (Supply Eq 𝛼1 > 0)

𝑄𝑠
𝑡 = 𝑄𝑑

𝑡 (Market Clearing)

𝑄 and 𝑃 represent log quantities and log prices respectively, so 𝛿1 and 𝛼1
represent price elasticities of demand and supply respectively
Suppose the demand shock 𝜖𝑑𝑡 and supply shock 𝜖𝑠𝑦 are iid noise terms with zero
means and variances 𝜎2

𝑑 and 𝜎2
𝑠 respectively, and are mutually uncorrelated
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Example 3: Simultaneity Bias

Market clearing implies

𝛿0 + 𝛿1𝑃𝑡 + 𝜖𝑑𝑡 = 𝛼0 + 𝛼1𝑃𝑡 + 𝜖𝑠𝑡
Solving gives

𝑃𝑡 =
𝛼0 − 𝛿0
𝛿1 − 𝛼1

+ 𝜖𝑠𝑡 − 𝜖𝑑𝑡
𝛿1 − 𝛼1

.

Substituting 𝑃𝑡 into either the demand or supply equation gives

𝑄𝑡 = (𝛿0 + 𝛿1
𝛼0 − 𝛿0
𝛿1 − 𝛼1

)+ 𝛿1𝜖𝑠𝑡 − 𝛼1𝜖𝑑𝑡
𝛿1 − 𝛼1

.
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Example 3: Simultaneity Bias

This implies

Var(𝑃𝑡) =
𝜎2
𝑠 + 𝜎2

𝑑
(𝛿1 − 𝛼1)2

and Cov(𝑃𝑡, 𝑄𝑡) =
𝛿1𝜎2

𝑠 + 𝛼1𝜎2
𝑑

(𝛿1 − 𝛼1)2
.

Regression of 𝑄𝑡 = 𝛽0 + 𝛽1𝑃𝑡 + 𝜖𝑡 gives

̂𝛽1
𝑝

⟶ Cov(𝑄𝑡, 𝑃𝑡)
Var(𝑃𝑡)

= 𝛿1𝜎2
𝑠 + 𝛼1𝜎2

𝑑
𝜎2𝑠 + 𝜎2

𝑑

which is neither the price elasticity of demand nor the price elasticity of supply.
Reason is that the regressor 𝑃𝑡 is “endogenous” (so is 𝑄𝑡)
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Session 2.5

Session 2.5 Sampling and Other Issues

Examples of sampling problems that make sample not representative of population
Measurement error

Truncated samples

Problem for both estimation of predictive and causal relationships
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Sampling Problems: Measurement Error

Suppose 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖 but 𝑋 is only observed with error,
i.e., you only observe 𝑋∗ = 𝑋 + 𝑢.
Assume measurement error 𝑢 is independent of 𝑋. Then

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖
= 𝛽0 + 𝛽1(𝑋∗ − 𝑢) + 𝜖
= 𝛽0 + 𝛽1𝑋∗ + (𝜖 − 𝛽1𝑢)
= 𝛽0 + 𝛽1𝑋∗ + 𝑣

where 𝑣 = 𝜖 − 𝛽1𝑢
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Sampling Problems: Measurement Error
You estimate

𝑌 = 𝛽0 + 𝛽1𝑋∗ + 𝑣 (1)

since only 𝑋∗ is available to you
However, since 𝑢 is correlated with 𝑋∗

𝑣 = 𝜖 − 𝛽1𝑢 is correlated with 𝑋∗

𝐸(𝑣 ∣ 𝑋∗) = 0 does not hold
𝐸(𝑌 ∣ 𝑋∗) ≠ 𝛽0 + 𝛽1𝑋∗

Coefficient on 𝑋∗ in 𝐸(𝑌 ∣ 𝑋∗) is not 𝛽1
̂𝛽𝑜𝑙𝑠
1 from (1) is biased/inconsistent
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Y
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Sampling Problems: Truncated Sampling

Suppose 𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋 with 𝛽1 > 0
But suppose you do not have a random sample {𝑋𝑖, 𝑌𝑖}𝑛𝑖=1

In particular, suppose you have a “truncated sample” where you cannot observe
any observation where 𝑌𝑖 > 𝑐.
This induces correlation between 𝜖𝑖 and 𝑋𝑖

large 𝑋𝑖 together with large positive 𝜖𝑖 makes 𝑌𝑖 > 𝑐 more likely

large 𝑋𝑖 that are observed are those with lower or negative values of 𝜖𝑖
implies a negative correlation between 𝑋𝑖 and 𝜖𝑖
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Sampling Problems: Truncated Sampling
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Specification Issues

What if 𝐸(𝑌 ∣ 𝑋) ≠ 𝛽0 + 𝛽1𝑋?

e.g. what if 𝐸(𝑌 ∣ 𝑋) = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2

̂𝑌 = ̂𝛽𝑜𝑙𝑠
0 + ̂𝛽𝑜𝑙𝑠

1 𝑋 will be a biased estimate of 𝐸(𝑌 ∣ 𝑋)

If 𝐸(𝑌 ∣ 𝑋) ≈ 𝛽0 + 𝛽1𝑋, then ̂𝑌 = ̂𝛽𝑜𝑙𝑠
0 + ̂𝛽𝑜𝑙𝑠

1 𝑋 will (hopefully) only be a slightly
biased estimate of 𝐸(𝑌 ∣ 𝑋)
“Local approaches” may give unbiased estimates, but may have large standard errors

The simple linear regression model, though slightly biased, may have smaller standard
errors
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Roadmap

(Previous) Session 1: Statistics Review
This Session 2: Simple Linear Regression
Next Session 3: Estimator Standard Errors; Multiple Linear Regression
Session 4: Matrix Algebra
Session 5: OLS using Matrix Algebra
Session 6: Hypothesis Testing
Session 7: Prediction
Session 8: Instrumental Variable Regression
Session 9: Logistic and Other Regressions
Session 10: Panel Data Regressions
Session 11: Introduction to Time Series
Session 12: Time Series Regressions
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