ECON207 Session 2 Linear Regression Overview

Anthony Tay

This Version: 31 Jul 2024

Deep dive into the Simple Linear Regression (SLR) model and Ordinary Least Squares (OLS) estimation methodology

Specific example: to estimate the relationship between hourly earnings and years of schooling

- Interested in explaining how hourly earnings vary with years of schooling
 - focus is on variation in hourly earnings and
 - the extent to which years of schooling explains variation in hourly earnings
- Population of interest: US non-institutional employed civilians aged 16 & above in 2018

You have a random sample of n = 4946 individuals from that population

library(tidyverse) # packages for data wrangling and plotting library(patchwork) # ... for composing plots library(latex2exp) # ... for LaTeX (math) annotations in plots dat <- read_csv("data\\earnings2019.csv", show_col_types=FALSE) head(dat,3)

A tibble: 3×11 age height educ feduc meduc tenure wexp race male earn totalwork <dbl> <dbl > <d <db1> 1 59 67 12 3 З 5 30 White 0 36.3 1652 2 43 63 10 4 3 7 13 White 1 6.46 1548 3 2 3 28 74 12 6 9 White 1 13.1 2460

We model our data $\{Y_i, X_i\}_{i=1}^n$ as a random sample from the population

• Y_i and X_i are hourly earnings and years of schooling of individual i respectively

Population represented by some joint probability distribution function $f_{X,Y}(x,y)$

i.e.,
$$(X_i,Y_i) \stackrel{iid}{\sim} f_{X,Y}(x,y)$$

- (X_i,Y_i) independent of (X_j,Y_j) , $i \neq j$ (independent across observations)
- $\bullet \ X_i$ and Y_i can be related to each other

Objective will be to learn something about $f_{X,Y}(x,y)$

 $\bullet\,$ E.g., conditional expectation (conditional mean) of Y given X, $E(Y\mid X)$

Agenda for this session

- A bit of math
 - Joint distributions, conditional expectations
 - A bit of optimization theory
- Introduction to the simple linear regression model
 - Estimation via OLS
 - Predictive vs causal interpretations of parameters
 - Application to returns to schooling application
 - Non-technical intro first, then details

Session 2.1

Session 2.1 Math Review

- Conditional distributions and expectations
- A bit of optimization theory

Joint and Conditional Distributions

Joint Probability Distribution Function tells us the probability of obtaining various events

Consider bivariate (two variable) case

- $\bullet\,$ Discrete Variables: $f_{X,Y}(x,y)=\Pr(X=x,Y=y)$
- Continuous Variables: $f_{X,Y}(x,y)$ such that

$$\Pr(a \leq X \leq b, c \leq Y \leq d) = \int_a^b \int_c^d f_{X,Y}(x,y) \, dy \, dx$$

In our application later: earn Y is "continuous" whereas educ X is discrete (not a problem)

•
$$f_{X,Y}(x,y)$$
 where $Y\in(0,+\infty)$ and $X=7,8,\ldots,17$

Can extend to more than two variables

C O

Joint and Conditional Distributions

We will take a simple, artificial, discrete example to illustrate the concepts

		0	0	0	0	0	$\overline{20}$
		5.5	0	0	0	$\frac{1}{20}$	$\frac{2}{20}$
Random Variables X , Y		5	0	0	$\frac{1}{20}$	$\frac{2}{20}$	$\frac{1}{20}$
with possible values	Y	4.5	0	$\frac{1}{20}$	$\frac{2}{20}$	$\frac{1}{20}$	0
x = 1, 2, 3, 4, 5		4	$\frac{1}{20}$	$\frac{2}{20}$	$\frac{1}{20}$	0	0
y = 5, 5.5, 4, 4.5, 5, 5.5, 0		3.5	$\frac{2}{20}$	$\frac{1}{20}$	0	0	0
with Joint PDF		3	$\frac{1}{20}$	0	0	0	0
$f_{X,Y}(x,y) = \Pr(X = x, Y = y)$			1	2	3	4	$\overline{5}$
					X		

1

0 0 0

Agenda A Bit of Math Linear Regression Overview Simple Linear Regression Causal Interpretations? Sampling & Other Issues Overview Overview Overview Causal Interpretations?

Marginal (Unconditional) Distributions

Anthony Tay

Condition Distribution (when X = 1)

$$Pr(Y = 3.0 \mid X = 1) = \frac{1/20}{4/20} = \frac{1}{4}$$

$$Pr(Y = 3.5 \mid X = 1) = \frac{2/20}{4/20} = \frac{1}{2}$$

$$Pr(Y = 4.0 \mid X = 1) = \frac{1/20}{4/20} = \frac{1}{4}$$

$$Pr(Y = 4.5 \mid X = 1) = \frac{0}{4/20} = 0$$

$$Pr(Y = 5.0 \mid X = 1) = \frac{0}{4/20} = 0$$

$$Pr(Y = 5.5 \mid X = 1) = \frac{0}{4/20} = 0$$

$$Pr(Y = 6.0 \mid X = 1) = \frac{0}{4/20} = 0$$

In general, we have

$$\Pr(Y = y \mid X = x) = \frac{\Pr(Y = y, X = x)}{\Pr(X = x)}$$

$$\Pr(Y=y,X=x) = \Pr(Y=y \mid X=x) \Pr(X=x)$$

We can write

- or -

$$f_{X,Y}(x,y)=f_{Y\mid X}(y\mid x)f_X(x)=f_{X\mid Y}(x\mid y)f_Y(y)$$

Conditional Distribution / Expectation / Variance

Calculate for each possible value of X

In this example, $E(Y \mid X)$ varies with X, $Var(Y \mid X)$ is constant for all X

Anthony Tay

Agenda A Bit of Math Linear Regression Overview Simple Linear Regression Causal Interpretations? Sampling & Other Issues Roadmap

Conditional Distributions / Expectation / Variance

For earnings and educ sample

Suggests

- $\quad \ \ \, Y|X\sim {\rm Log-normal}(\mu,\sigma^2)?$
- $\ln Y | X \sim \operatorname{Normal}(\mu, \sigma^2)$?
- Does μ and/or σ^2 depend on X?

Conditional Expectations

For continuous random variables X, Y with joint pdf $f_{X,Y}(x,y)$ we have

•
$$f_X(x) = \int_Y f_{X,Y}(x,y)\,dy$$
 and $f_Y(y) = \int_X f_{X,Y}(x,y)\,dx$

•
$$f_{X,Y}(x,y) = f_{Y|X}(y \mid x) f_X(x) = f_{X|Y}(x \mid y) f_X(y)$$

•
$$E(Y \mid X = x) = \int_Y y f_{Y|X}(y \mid x) \, dy$$

•
$$Var(Y \mid X = x) = \int_Y (y - E_{Y|X}(Y))^2 f_{Y|X}(y \mid x) \, dy$$

Conditional Expectations

Manipulating Conditional Expectations (and Conditional Variances)

• Treat conditioning information as fixed

Examples:

- $\bullet \ E(aXY \mid X) = aXE(Y \mid X)$
- $Var(aXY \mid X) = a^2 X^2 Var(Y \mid X)$
- $Var(aX \mid X) = 0$ (cf. $Var(aX) = a^2 Var(X)$)

Returning to our example, and "reinstating" the randomness in \boldsymbol{X}

- $E(Y \mid X)$ is a function of X
- Because X is a random variable, so is $E(Y \mid X)$

Here $E(Y \mid X)$ is uniformly distributed over 3.5, 4.0, 4.5, 5.0, 5.5

Can compute mean and variance of $E(Y \mid X)$:

- $E_X(E_{Y|X}(Y \mid X)) = 3.5(0.2) + 4.0(0.2) + \dots + 5.5(0.2) = 4.5$
- $Var_X(E_{Y|X}(Y \mid X)) = ?$ (Exercise)

Recall $E_Y(Y) = 4.5$

Not a coincidence that E(Y) is the same as $E_X(E_{Y\mid X}(Y\mid X))$

Law of Iterated Expectations

$$E_Y(Y) = E_X(E_{Y\mid X}(Y\mid X))$$

 $\text{Special case of } E_{X,Y}(g(X,Y)) = E_X(E_{Y|X}(g(X,Y)))$

$$\begin{split} E_{X,Y}(g(X,Y)) &= \int_X \int_Y g(x,y) f_{X,Y}(x,y) \, dy \, dx \\ &= \int_X \int_Y g(x,y) f_{Y|X}(y \mid x) f_X(x) \, dy \, dx \\ &= \int_X \left(\int_Y g(x,y) f_{Y|X}(y \mid x) \, dy \right) \, f_X(x) \, dx \\ &= E_X \left(E_{Y|X}(g(X,Y) \mid X) \right) \end{split}$$

If g(X, Y) = Y, we get the law of iterated expectations

Implications of Law of Iterated Expectations

If
$$E(Y \mid X) = c$$
, then (a) $E(Y) = c$, (b) $Cov(X, Y) = 0$

If
$$E(Y \mid X) = \beta_0 + \beta_1 X$$
, then (c) $\beta_0 = E(Y) - \beta_1 E(X)$, (d) $\beta_1 = \frac{Cov(X,Y)}{Var(X)}$

Proof: If $E(Y \mid X) = c$, then (a) $E(Y) = E(E(Y \mid X)) = E(c) = c$

(b) $\begin{aligned} &Cov(X,Y)=E(YX)-E(Y)E(X)=E(XE(Y\mid X))-cE(X)=cE(X)-cE(X)=0\\ &\text{If }E(Y\mid X)=\beta_0+\beta_1X\text{, then} \end{aligned}$

(c) $E(Y)=E(E(Y|X))=E(\beta_0+\beta_1X)=\beta_0+\beta_1E(X)$

(d) We have

$$\begin{split} E(YX) &= E(E(YX \mid X)) = E(XE(Y \mid X)) = E(X(\beta_0 + \beta_1 X)) \\ &= \beta_0 E(X) + \beta_1 E(X^2) \end{split}$$

Substituting in $\beta_0=E(Y)-\beta_1 E(X)$ gives

$$\begin{split} E(YX) &= E(Y)E(X) - \beta_1 E(X)^2 + \beta_1 E(X^2) = E(Y)E(X) + \beta_1 \operatorname{Var}(X) \\ \beta_1 &= \frac{E(YX) - E(Y)E(X)}{\operatorname{Var}(X)} = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)} \end{split}$$

Is there a law of iterated variance?

If yes, what does it look like?

We have

$$Var(Y) = E(Var(Y \mid X)) + Var(E(Y \mid X))$$

Proof: exercise

Exercise:

- $\bullet\,$ Find marginal distribution of X and Y
- $\bullet\,$ Find conditional distribution of Y given X
- \bullet Find $\mathit{Cov}(X,Y)$
- How is cond. distribution of Y related to X?

 \boldsymbol{X} and \boldsymbol{Y} in exercise are uncorrelated but not independent

Two random variables are independent if

$$\Pr(Y = y \mid X = x) = \Pr(Y = y) \text{ for all } x \text{ and } y$$

or

$$\Pr(Y=y,X=x)=\Pr(Y=y)\Pr(X=x)$$
 for all x and y

For continuous rv: $f_{Y|X}(y \mid x) = f_Y(y) \text{ or } f_{Y,X}(y,x) = f_Y(y) f_X(x)$

Independent Random Variables

Suppose Y and X have the following joint pdf:

_

				X		
		1	2	3	4	5
	1	0.01	0.04	0.03	0.01	0.01
	2	0.02	0.08	0.06	0.02	0.02
Y	3	0.04	0.16	0.12	0.04	0.04
	4	0.02	0.08	0.06	0.02	0.02
	5	0.01	0.04	0.03	0.01	0.01

Independent? Identically Distributed?

A Little Optimization Theory

- $\bullet\,$ Given $f(x)\text{, find}\,\,x^*$ such that $f(x^*)$ is max or min
- $\bullet\,$ Given $f(x,y)\text{, find}\,\,(x^*,y^*)$ such that $f(x^*,y^*)$ is max or min

Presume you know differentiation and partial differentiation, e.g.,

•
$$f(x) = x^2 \Rightarrow f'(x) = 2x$$
 (if $y = f(x)$, we can write $f'(x)$ as $\frac{dy}{dx}$)

•
$$z = f(x,y) = x^2 y^3 \Rightarrow \frac{\partial z}{\partial x} = 2xy^3$$
 and $\frac{\partial z}{\partial y} = 3x^2 y^2$

 $\frac{\partial z}{\partial x}$: how z changes with x, holding y fixed $\frac{\partial z}{\partial y}$: how z changes with y, holding x fixed

A Little Optimization Theory

$$z = f(x,y) = x^2 y^3$$

First partial derivatives: $\frac{\partial z}{\partial x} = 2xy^3$, $\frac{\partial z}{\partial y} = 3x^2y^2$

Second partial derivatives:

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = 2y^3 \qquad \qquad \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = 6xy^2$$
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = 6xy^2 \qquad \qquad \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = 6x^2y$$

Notice that $\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y}$. This is true in general ("Young's Theorem")

Anthony Tay

ECON207 Session 2

A Little Optimization Theory

We'll look only at the cases relevant to us

- $\bullet~$ If f''(x)>0 for all x, then $f'(x^*)=0 \Rightarrow x^*$ minimizes f(x)
- $\bullet~$ If f''(x)<0 for all x, then $f'(x^*)=0 \Rightarrow x^*$ maximizes f(x)
- f''(x) > 0, f''(x) < 0 are not necessary for f(x) to have a min/max

Two variables f(x,y)

Same idea for f(x, y): f concave implies stationary pt is max, f convex implies stationary pt is min Stationary point: (x^*, y^*) such that $f'_x(x^*, y^*) = 0$ and $f'_y(x^*, y^*) = 0$

- If f(x,y) is convex; stationary point is minimum point
- If f(x,y) is concave; stationary point is maximum point

$$\bullet \ \ \mathrm{If} \ v_1^2 \frac{\partial^2 f(x,y)}{\partial x^2} + 2 v_1 v_2 \frac{\partial^2 f(x,y)}{\partial x \partial y} + v_2^2 \frac{\partial^2 f(x,y)}{\partial y^2} < 0 \ \ \mathrm{for} \ \ \mathrm{all} \ v_1,v_2 \ \ \mathrm{not} \ \mathrm{both} \ \mathrm{zero}$$

then $f(\boldsymbol{x},\boldsymbol{y})$ is concave

$$\bullet \ \ {\rm If} \ v_1^2 \frac{\partial^2 f(x,y)}{\partial x^2} + 2 v_1 v_2 \frac{\partial^2 f(x,y)}{\partial x \partial y} + v_2^2 \frac{\partial^2 f(x,y)}{\partial y^2} > 0 \ \ {\rm for \ all} \ v_1,v_2 \ \ {\rm not \ both \ zero}$$

then $f(\boldsymbol{x},\boldsymbol{y})$ is convex

Two variables f(x,y)

Rough explanation: let $x = x_0 + v_1 s$, $y = y_0 + v_2 s$, $v_1^2 + v_2^2 = 1$, and

$$z(s) = f(x(s), y(s))$$

Note that $z(0)=f(x_0,y_0)\text{, }dx/ds=v_1\text{, }dy/dx=v_2$

Directional derivative at $(\boldsymbol{x}_0,\boldsymbol{y}_0)$ in direction $\boldsymbol{v}=(v_1,v_2)$ is

$$\frac{dz}{ds} = f'_x(x,y)\frac{dx}{ds} + f'_y(x,y)\frac{dy}{ds} = v_1 f'_x(x,y) + v_2 f'_y(x,y)$$

 (x_0,y_0) stationary pt means slope = 0 in all directions at the point, i.e.,

$$f_x'(x_0,y_0)=0, f_x'(x_0,y_0)=0\,.$$

Two variables
$$f(x,y)$$

Second directional derivative is

$$\begin{split} \frac{d^2z}{ds^2} &= f'_x(x,y)\frac{dx}{ds} + f'_y(x,y)\frac{dy}{ds} \\ &= \left[f''_{xx}(x,y)\frac{dx}{ds} + f''_{xy}(x,y)\frac{dy}{ds}\right]\frac{dx}{ds} + f'_x(x,y)\frac{d^2x}{ds^2} + \\ &\left[f''_{yx}(x,y)\frac{dx}{ds} + f''_{yy}(x,y)\frac{dy}{ds}\right]\frac{dy}{ds} + f'_y(x,y)\frac{d^2y}{ds^2} \\ &= v_1^2 f''_{xx}(x,y) + 2v_1 v_2 f''_{xy}(x,y) + v_2^2 f''_{yy}(x,y) \\ \text{since } dx/ds = v_1, \, dy/ds = v_2, \text{ and } d^2x/ds^2 = d^2y/ds^2 = 0 \\ f \text{ convex: slope decreasing in all directions, i.e., } z''(0) < 0 \text{ for all } v \text{ and for all } (x_0, y_0) \\ f = v_1 + v_1 + v_2 + v_2 + v_2 + v_3 + v$$

f concave: slope increasing in all directions, i.e., $z^{\prime\prime}(0)>0$ for all v and for all (x_0,y_0)

Two variables f(x,y)

Find minimum point of
$$f(x,y) = x^2 + xy + y^2$$

We have $f'_x(x,y) = 2x + y$ and $f'_y(x,y) = y + 2y$

Therefore

FOC:
$$\begin{array}{l} f'_x(x^*,y^*) = 2x^* + y^* = 0 \\ f'_y(x^*,y^*) = 2y^* + x^* = 0 \\ \end{array} \Rightarrow \ (x^*,y^*) = (0,0) \ \text{ stationary point} \end{array}$$

Two variables f(x,y)

We have
$$f''_{xx}(x,y) = 2$$
, $f''_{xy}(x,y) = f''_{yx}(x,y) = 1$ and $f''_{yy}(x,y) = 2$, therefore

$$\begin{split} v_1^2 f_{xx}''(x,y) &+ 2v_1 v_2 f_{xy}''(x,y) + v_2^2 f_{yy}''(x,y) \\ &= 2(v_1^2 + v_1 v_2 + v_2^2) \\ &= 2[(v_1 + 0.5 v_2)^2 + 0.75 v_2^2] > 0 \end{split}$$

for all v_1, v_2 not both equal to zero

The function f(x, y) is convex

Therefore $(x^{\ast},y^{\ast})=(0,0)$ is a minimum point of $f(x,y)=x^{2}+xy+y^{2}$

Session 2.2

Session 2.2 Linear Regression Overview

• Non-technical Introduction to the Linear Regression Model

What is the relationship between earn and educ?

Perhaps estimate Cov(earn, educ)?

```
dat1 <- dat %>% select(c(earn, educ))
N <- nrow(dat1)
cov_yx <- cov(dat1)[1,2]
cor_yx <- cor(dat1)[1,2]
set.seed(1701) # Set random number seed for bootstrap standard errors
B <- 200; # Number of bootstrap replications
bcov <- bcor <- rep(NA, B) # To store bootstrapped covs and cors
for (b in 1:B){
    bcov[b] <- cov(sample_n(dat1, N, replace=TRUE))[1,2]
    bcor[b] <- cor(sample_n(dat1, N, replace=TRUE))[1,2]
}
cat("sample cov(earn, educ):", round(cov_yx,3), " s.e.:", round(sqrt(var(bcov)),3), "\n")
cat("sample cor(earn, educ):", round(cor_yx,3), " s.e.:", round(sqrt(var(bcor)),3), "\n")</pre>
```

sample cov(earn, educ): 17.622 s.e.: 0.736
sample cor(earn, educ): 0.321 s.e.: 0.017

Positive correlation \longrightarrow higher earn associated with more years of educ

Another perspective: estimate $E(earn \mid educ)$

Tells you how earn changes with one year change in educ,

i.e., $E(earn \mid educ + 1) - E(earn \mid educ)$ at various levels of educ

How to estimate $E(earn \mid educ)$?

Suppose we estimate mean earn at each level of educ

# A	tibb]	le: 11	x 4	
	educ	n	mean_earn	se_earn
•	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>
1	7	6	17.8	5.00
2	8	17	14.4	1.48
З	9	39	18.0	2.16
4	10	69	21.4	2.87
5	11	184	16.8	0.668
6	12	1113	21.0	0.387
7	13	411	20.8	0.623
8	14	790	24.3	0.509
9	15	270	25.1	1.01
10	16	1095	38.6	1.13
11	17	952	40.7	0.963
Alternative: estimate mean ln(earn) at each level of educ $E(\ln earn \mid educ = i)$ for $i=7,\ldots,17$

#	A	tibb]	le: 11	x 4	
		educ	n	mean_logearn	se_logearn
	•	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>
1	L	7	6	2.70	0.280
2	2	8	17	2.57	0.118
3	3	9	39	2.70	0.0974
4	1	10	69	2.83	0.0749
Ę	5	11	184	2.68	0.0411
e	3	12	1113	2.88	0.0176
7	7	13	411	2.89	0.0261
8	3	14	790	3.04	0.0195
ç)	15	270	3.06	0.0337
10)	16	1095	3.43	0.0193
11	L	17	952	3.52	0.0196

How to interpret differences in $\ln x_2 - \ln x_1$?

Linear approximation of a function $f(\boldsymbol{x})$ around $\boldsymbol{x}=\boldsymbol{a}$

$$f(x)\approx p(x)=f(a)+f'(a)(x-a) \quad \text{for } x \ \text{ near } a$$

When $f(x) = \ln x$, f'(x) = 1/x

Therefore, for all \boldsymbol{x} near $\boldsymbol{x}_1,$ we have

$$\ln x\approx p(x)=\ln x_1+\frac{1}{x_1}(x-x_1)$$
 For x_2 near x_1 , we have $\ln x_2-\ln x_1\approx \frac{x_2-x_1}{x_1}$

i.e., $\ln x_2 - \ln x_1$ is approx. difference between x_2 and x_1 as percentage of x_1 Anthony Tay ECON207 Session 2 This Version: 31 Jul 2024

Another approach: assume

$$E(\ln earn \mid educ) = \beta_0 + \beta_1 educ$$

Interpretation: β_1 is percentage difference in mean hourly earnings comparing two people with one year difference years of schooling

Use data to estimate β_0 and β_1 :

$$\widehat{E}(\ln earn \mid educ) = \widehat{\beta}_0 + \widehat{\beta}_1 educ$$

How to estimate β_0 and β_1 ? Maybe choose $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize

$$\sum_{i=1}^n (\ln earn_i - \hat{\beta}_0 - \hat{\beta}_1 educ_i)^2$$

"Ordinary Least Squares"

Qn: Is this a good way to estimate β_0 and β_1 ? Good under what conditions? Do those conditions hold? Are there better ways?

mdl1 <- lm(log(earn) ~ educ, data = dat)
summary(mdl1)\$coefficients %>% round(4)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.320	0.0575	22.9399	0
educ	0.128	0.0040	32.1700	0

We will study the math later (in detail!!)

Additional one year of schooling is associated with additional mean hourly earnings of around 12.8%

Statistically significant

- Linear regression uses a "global approach"
- Uses assumption about form of conditional expectation to "tie" data together
- Uses all observations to estimate two parameters
- Able to give "big perspective" view of relationship between ln earn and educ
- $\bullet\,$ Previous approach was "local", and estimated 11 means
- Is assumption about form of conditional expectation correct? (Probably not)

$$E(\ln earn \mid educ) = \beta_0 + \beta_1 educ + \beta_2 educ^2$$

$$\text{Choose } \hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2 \text{ to minimize } \sum_{i=1}^n (\ln earn_i - \hat{\beta}_0 - \hat{\beta}_1 educ - \hat{\beta}_2 educ^2)^2$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.4870	0.3573	9.7607	0e+00
educ	-0.1899	0.0519	-3.6600	3e-04
I(educ^2)	0.0114	0.0019	6.1455	0e+00

$$\begin{split} &\widehat{E}(\ln earn \mid educ + 1) - \widehat{E}(\ln earn \mid educ) \\ &= \hat{\beta}_0 + \hat{\beta}_1(educ + 1) + \hat{\beta}_2(educ + 1)^2 \\ &- (\hat{\beta}_0 + \hat{\beta}_1 educ + \hat{\beta}_2 educ^2) \\ &= \hat{\beta}_1 + \hat{\beta}_2 + 2\hat{\beta}_2 educ \end{split}$$

Qns:

- Is $E(\ln earn \mid educ)$ really quadratic?
 - Probably not, but probably close enough. Nice "big picture" view of relationship
 - good Bias-Variance trade-off compared with "local approach"

Why are we estimating $E(Y \mid X)$?

- To use educ to predict hourly earnings?
 - Some predictive ability but not a lot
 - What other factors are relevant?
- To determine if variation in hourly earnings is determined by years of schooling?
 - To what extent can we view estimated relationship as "causal"?

 $\mbox{Consider } E(\ln earn \mid height), \mbox{ assuming } E(\ln earn \mid height) = \beta_0 + \beta \, height$

mdl2 <- lm(log(earn) ~ height, data = dat)
summary(mdl2)\$coefficients %>% round(4)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.2382	0.1536	8.0617	0
height	0.0284	0.0023	12.4766	0

Every additional inch in height is associated with 2.8% more hourly earnings (statistically and economically significant)

Can we say height causes higher hourly earnings?

If "no", then how to interpret the estimates?

What if we include male in specification:

```
E(\ln earn \mid height) = \beta_0 + \beta_1 \, height + \beta_2 \, male
```

```
mdl2a <- lm(log(earn) ~ height + male, data = dat)
summary(mdl2a)$coefficients %>% round(4)
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.8140	0.2003	9.0568	0
height	0.0191	0.0031	6.1896	0
male	0.1109	0.0248	4.4668	0

Coefficient in height now smaller

- Why does including male change the coefficient (and standard error) on height?
- Does coefficient of height now reflect extent of causality of height on earn?
- What exactly happens when we include a new variable?

A fuller specification

mdl3 <- lm(log(earn) ~ height + male + educ + I(educ²) + wexp + age + I(age²) + tenure, data = dat)
summary(mdl3)\$coefficients %>% round(4)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7950	0.3757	2.1164	0.0344
height	0.0132	0.0026	4.9756	0.0000
male	0.1834	0.0215	8.5439	0.0000
educ	-0.1553	0.0483	-3.2180	0.0013
I(educ^2)	0.0102	0.0017	5.9257	0.0000
wexp	-0.0022	0.0011	-2.0137	0.0441
age	0.0621	0.0046	13.3546	0.0000
I(age^2)	-0.0007	0.0001	-12.9063	0.0000
tenure	0.0147	0.0011	14.0261	0.0000

(Height still significant...)

Session 2.3

Session 2.3 The Simple Linear Regression Model

- Derive relevant formulas related to estimation of simple linear regression model
- When OLS gives good estimators and when not
- How to interpret fitted parameters and fitted model
 - Statistical Interpretation
 - Economic Interpretation
 - Predictive vs Causal Interpretation

(Next session: what happens when we include new variables)

Assumptions about population:

• $E(Y \mid X) = \beta_0 + \beta_1 X$

Assumptions about sample

- $\{X_i, Y_i\}_{i=1}^n$ is a random sample from the population of interest
- $\sum_{i=1}^n (X_i \overline{X})^2 > 0,$ i.e., there is variation in the X_i observations

Objective is to estimate $E(Y \mid X)$, i.e., to obtain an empirical model

$$\widehat{E(Y \mid X)} = \hat{\beta}_0 + \hat{\beta}_1 X$$

Will often write the empirical model as $\hat{Y}=\hat{\beta}_0+\hat{\beta}_1X$

If we define $\epsilon = Y - E(Y \mid X) = Y - \beta_0 - \beta_1 X$, we can write the model as

$$Y = \beta_0 + \beta_1 X + \epsilon \,, \, E(\epsilon \mid X) = 0 \ \, \text{and} \ \, \textit{Var}(\epsilon \mid X) = \sigma^2$$

Note that $E(\epsilon \mid X) = 0$ implies

- $E(\epsilon) = 0$ and
- $Cov(\epsilon, X) = 0$

The second of these is often written $E(\epsilon X) = 0$ since

$$\mathit{Cov}(\epsilon,X)=0 \Leftrightarrow E(\epsilon X)-E(\epsilon)E(X)=0 \Leftrightarrow E(\epsilon X)=0$$

If sample is representative of the population, then the sample satisfies

 $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \,, \, i = 1, \dots, n \quad (\text{``Linear Regression Model''})$

- $Y_i \sim$ "Regressand", "Dependent Variable", "Outcome Variable"
- $X_i \sim$ "Regressor", "Independent Variable", "Predictor", "Feature"
- $\epsilon_i \sim$ "Noise" or "Error" term
- $\bullet \ \beta_1$ is the slope coefficient or simply "coefficient" on X_i
- β_0 is the (y-) intercept term or "constant" term

In Machine Learning, β_0 is called the "bias". We will ${\bf not}$ use that terminology here.

The assumptions imply

$$Y_i=\beta_0+\beta_1X_i+\epsilon_i\,,\,i=1,\ldots,n$$

•
$$E(\epsilon_i \mid X_1, X_2, \dots, X_n) = 0$$
 for all $i = 1, \dots, n$

$$\bullet \ E(\epsilon_i \epsilon_j \mid X_1, X_2, \dots, X_n) = 0 \text{ for all } i, j = 1, \dots, n, \ i \neq j$$

The first comes from $E(\epsilon \mid X) = 0$ and the iid assumption.

The second comes from the iid assumption.

Estimation by Ordinary Least Squares

Given any potential estimator $\hat{\beta}_0$ and $\hat{\beta}_1,$ define

- Fitted values: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_0 X_i$
- Residuals: $\hat{\epsilon}_i = Y_i \hat{Y}_i = Y_i \hat{\beta}_0 \hat{\beta}_0 X_i$
- Sum of Squared Residuals (SSR): $\sum_{i=1}^n \hat{\epsilon}_i^2 = \sum_{i=1}^n (Y_i \hat{\beta}_0 \hat{\beta}_0 X_i)^2$

$$\mathsf{OLS}:\quad \hat{\beta}_0^{ols}, \hat{\beta}_1^{ols} = \mathop{\arg\min}_{\hat{\beta}_0, \hat{\beta}_1} \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$$

Ordinary Least Squares

data in ols01.csv							
# A	tibbl	Le:	10	х	2		
	Х		Y				
	<dbl></dbl>	<dł< td=""><td>51></td><td></td><td></td></dł<>	51>				
1	2.51	7	.64				
2	5.17	10	.7				
3	1.73	3	.11				
4	3.42	1	.85				
5	4.03	11	.8				
6	4.58	10	.6				
7	8.19	15	.5				
8	6.59	9	.63				
9	8.72	13	.7				
10	6.06	11	.8				

Ordinary Least Squares

First-Order Condition:

(1)
$$\frac{\partial SSR}{\partial \hat{\beta}_0}\Big|_{\hat{\beta}_0^{ols}, \, \hat{\beta}_1^{ols}} = -2\sum_{i=1}^n (Y_i - \hat{\beta}_0^{ols} - \hat{\beta}_1^{ols} X_i) = 0$$

(2) $\frac{\partial SSR}{\partial \hat{\beta}_1}\Big|_{\hat{\beta}_0^{ols}, \, \hat{\beta}_1^{ols}} = -2\sum_{i=1}^n (Y_i - \hat{\beta}_0^{ols} - \hat{\beta}_1^{ols} X_i) X_i = 0$

Solving gives

$$\hat{\beta}_0^{ols} = \overline{Y} - \hat{\beta}_1^{ols}\overline{X}$$

$$\hat{\beta}_1^{ols} = \frac{\sum_{i=1}^n (Y_i - \overline{Y}) X_i}{\sum_{i=1}^n (X_i - \overline{X}) X_i} = \frac{\sum_{i=1}^n (X_i - \overline{X}) (Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

Ordinary Least Squares (Details)

$$(1) \quad \Rightarrow \quad \sum_{i=1}^{n} Y_{i} - n\hat{\beta}_{0}^{ols} - \hat{\beta}_{1}^{ols} \sum_{i=1}^{n} X_{i} = 0 \quad \Rightarrow \quad \overline{Y} - \hat{\beta}_{0}^{ols} - \hat{\beta}_{1}^{ols} \overline{X} = 0 \quad \Rightarrow \quad \hat{\beta}_{0}^{ols} = \overline{Y} - \hat{\beta}_{1}^{ols} \overline{X}$$

Substitute $\hat{\beta}_{0}^{ols}$ into (2), we have

$$\begin{split} &\sum_{i=1}^n (Y_i - (\overline{Y} - \hat{\beta}_1^{ols} \overline{X}) - \hat{\beta}_1^{ols} X_i) X_i = 0 \\ &\sum_{i=1}^n [(Y_i - \overline{Y}) - \hat{\beta}_1^{ols} (X_i - \overline{X})] X_i = 0 \\ &\sum_{i=1}^n (Y_i - \overline{Y}) X_i - \hat{\beta}_1^{ols} \sum_{i=1}^n (X_i - \overline{X}) X_i = 0 \quad \Rightarrow \quad \hat{\beta}_1^{ols} = \frac{\sum_{i=1}^n (Y_i - \overline{Y}) X_i}{\sum_{i=1}^n (X_i - \overline{X}) X_i} \end{split}$$

Anthony Tay

Ordinary Least Squares (Details)

Does the second-order condition hold for minimization problem? (i.e., is SSR convex in $\hat{\beta}_0$ and $\hat{\beta}_1$?)

$$\begin{split} \text{We have } & \frac{\partial^2 SSR}{\partial \hat{\beta}_0^2} = 2n, \ \frac{\partial^2 SSR}{\partial \hat{\beta}_1^2} = 2\sum_{i=1}^n X_i^2, \ \frac{\partial^2 SSR}{\partial \hat{\beta}_0 \partial \hat{\beta}_1} = 2\sum_{i=1}^n X_i \\ & v_1^2 \left(\frac{\partial^2 SSR}{\partial \hat{\beta}_0^2} \right) + 2v_1 v_2 \left(\frac{\partial^2 SSR}{\partial \hat{\beta}_0 \partial \hat{\beta}_1} \right) + v_2^2 \left(\frac{\partial^2 SSR}{\partial \hat{\beta}_1^2} \right) \\ & = 2 \left(v_1^2 n + 2v_1 v_2 \sum_{i=1}^n X_i + v_2^2 \sum_{i=1}^n X_i^2 \right) \\ & = 2n \left(v_1^2 + 2v_1 v_2 \overline{X} + v_2^2 \frac{1}{n} \sum_{i=1}^n X_i^2 \right) \\ & = 2n \left[(v_1 + v_2 \overline{X})^2 - v_2^2 \overline{X}^2 + v_2^2 \frac{1}{n} \sum_{i=1}^n X_i^2 \right] \\ & = 2n \left[(v_1 + v_2 \overline{X})^2 + v_2^2 \left(\frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 \right) \right] \\ & > 0 \ \text{ for all } v_1, v_2 \ \text{not both zero} \end{split}$$

Ordinary Least Squares

The estimated model (the "Sample Regression Line") is

$$\hat{Y} = \hat{\beta}_0^{ols} + \hat{\beta}_1^{ols} X$$

- The OLS fitted values are: $\hat{Y}_i^{ols}=\hat{\beta}_0^{ols}+\hat{\beta}_1^{ols}X_i$, $i=1,\ldots,n$
- The OLS residuals are $\hat{\epsilon}_i^{ols}=Y_i-\hat{Y}_i^{ols}=Y_i-\hat{\beta}_0^{ols}-\hat{\beta}_1^{ols}X_i$, $i=1,\ldots,n$

(We'll discuss estimator standard errors and other associated statistics in the next class) For now: Are $\hat{\beta}_0^{ols}$ and $\hat{\beta}_1^{ols}$ good estimators for β_0 and β_1 ?

Unbiasedness of OLS Estimator

(Focus on β_1) First rewrite $\hat{\beta}_1^{ols}$ as

$$\begin{split} \hat{\beta}_{1}^{ols} &= \frac{\sum_{i=1}^{n} (Y_{i} - \overline{Y}) X_{i}}{\sum_{i=1}^{n} (X_{i} - \overline{X}) X_{i}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) Y_{i}}{\sum_{i=1}^{n} (X_{i} - \overline{X}) X_{i}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) (\beta_{0} + \beta_{1} X_{i} + \epsilon_{i})}{\sum_{i=1}^{n} (X_{i} - \overline{X}) X_{i}} \\ &= \frac{\beta_{0} \sum_{i=1}^{n} (X_{i} - \overline{X}) + \beta_{1} \sum_{i=1}^{n} (X_{i} - \overline{X}) X_{i} + \sum_{i=1}^{n} (X_{i} - \overline{X}) \epsilon_{i}}{\sum_{i=1}^{n} (X_{i} - \overline{X}) X_{i}} \\ &= \frac{\beta_{0} \sum_{i=1}^{n} (X_{i} - \overline{X}) + \beta_{1} \sum_{i=1}^{n} (X_{i} - \overline{X}) X_{i} + \sum_{i=1}^{n} (X_{i} - \overline{X}) \epsilon_{i}}{\sum_{i=1}^{n} (X_{i} - \overline{X}) X_{i}} \end{split}$$

$$= \beta_1 + \frac{\sum_{i=1}^{n} (X_i - \overline{X}) \varepsilon_i}{\sum_{i=1}^{n} (X_i - \overline{X}) X_i}$$

$$\begin{array}{rll} \text{Then} \quad E(\hat{\beta}_1^{ols} \mid X_1, \ldots, X_n) \ = \ \beta_1 + \frac{\sum_{i=1}^n (X_i - \overline{X}) E(\epsilon_i \mid X_1, \ldots, X_n)}{\sum_{i=1}^n (X_i - \overline{X}) X_i} \ = \ \beta_1 \\ \end{array}$$

Unbiasedness

- It follows that $E(\hat{\beta}_1^{ols})=\beta_1$
- Intuition: population and sample parallels $E(\epsilon \mid X) = 0 \text{ implies} \qquad \qquad \text{FOC can be written as}$
 - $E(\epsilon) = 0$
 - $E(\epsilon X) = 0$

 $E(Y \mid X) = \beta_0 + \beta_1 X$ implies

• $\beta_0 = E(Y) - \beta_1 E(X)$ • $\beta_1 = \frac{Cov(X, Y)}{Var(X)}$

•
$$\sum_{i=1}^{n} \hat{\epsilon}_{i}^{ols} = 0$$
 or $(1/n) \sum_{i=1}^{n} \hat{\epsilon}_{i}^{ols} = \overline{\hat{\epsilon}}^{ols} = 0$

• $\sum_{i=1}^{n} \hat{\epsilon}_i^{ols} X_i = 0$

OLS estimators are

$$\begin{array}{l} \bullet \hspace{0.1cm} \hat{\beta}_{0}^{ols} = \overline{Y} - \hat{\beta}_{1}^{ols}\overline{X} \\ \bullet \hspace{0.1cm} \hat{\beta}_{1}^{ols} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \frac{smpl.Cov(X_{i},Y_{i})}{smpl.Var(X_{i})} \end{array}$$

Anthony Tay

Consistency

$\hat{\beta}_1^{ols}$ is also consistent for β_1

Rough argument 1:

$$\hat{\beta}_1^{ols} = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2}$$

Appealing to LLN:

- Numerator in second term converges in probability to population Cov(X,Y)
- Denominator in second term converges in probability to population Var(X)

$$\hat{\beta}_1^{ols} = \frac{\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})^2} \xrightarrow{p} \frac{Cov(X,Y)}{Var(X)} = \beta_1$$

Consistency

Rough argument 2:

$$\hat{\beta}_1^{ols} = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \beta_1 + \frac{\sum_{i=1}^n (X_i - \overline{X})\epsilon_i}{\sum_{i=1}^n (X_i - \overline{X})^2} = \beta_1 + \frac{\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})\epsilon_i}{\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})^2}$$

- Numerator in second term converges in probability to population $Cov(X,\epsilon)$
- Denominator in second term converges in probability to population Var(X)

If population $Cov(X,\epsilon) = 0$ and population $Var(X) \neq 0$, then

$$\hat{\beta}_1^{ols} = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}) \epsilon_i}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2} \xrightarrow{p} \beta_1 + \frac{Cov(X, \epsilon)}{Var(X)} = \beta_1$$

Session 2.4

Session 2.4 Causal Interpretations?

- When can you give causal interpretation to β_1 ?
- Do you only have a predictive relationship?

Causal Interpretations?

lf

- $Y = \beta_0 + \beta_1 X + \epsilon$, $E(\epsilon \mid X) = 0$ (or equivalently, $E(Y \mid X) = \beta_0 + \beta_1 X$)
- and you have a representative iid sample from the population
- $\bullet\,$ and you estimate $Y_i=\beta_0+\beta_1X_i+\epsilon_i$ using OLS

Then

- $\hat{\beta}_0^{ols}$ and $\hat{\beta}_1^{ols}$ are unbiased and consistent for β_0 and β_1
- The empirical model $\hat{Y}=\hat{\beta}_0^{ols}+\hat{\beta}_1^{ols}X$ is unbiased and consistent for $E(Y\mid X)$

Question: Can we interpret β_1 as representing the "causal effect" of X on Y? And can we regard $\hat{\beta}_1^{ols}$ as an unbiased and consistent estimate of this causal effect?

Causal Interpretations?

$$E(Y \mid X) = \beta_0 + \beta_1 X \implies \beta_1 = \frac{Cov(X,Y)}{Var(X)}$$

- $\hat{\beta}_1^{ols}$ ultimately estimates a correlation
- Predictive relationship
- "Correlation is not Causation"
- What do we mean by causal effect?
 - Effect of X on Y holding everything else "fixed" (a bit strong!)
 - $\bullet\,$ Effect on Y of variation in X that are uncorrelated with other factors affecting Y

Example 1: Omitted Variables

Suppose causal relationship among \boldsymbol{Y} , \boldsymbol{X} and \boldsymbol{Z} are

$$Y = \alpha_0 + \alpha_1 X + \alpha_2 Z + u \,, \, u \sim \mathsf{Normal}(0, \sigma_u^2)$$

$$Z = X + v \,, \, v \sim \mathsf{Normal}(0, \sigma_v^2)$$

where X and the noise terms u and v are independent "exogenous" variables. Then

$$E(Y \mid X) = \alpha_0 + \alpha_1 X + \alpha_2 E(Z \mid X) + E(u \mid X) = \alpha_0 + (\alpha_1 + \alpha_2) X$$

In the regression model $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, $\hat{\beta}_1^{ols}$ will be unbiased and consistent for $\alpha_1 + \alpha_2$, not α_1 .

- Estimates total effect of X on Y
- $\bullet \ \alpha_1$ is effect of X on Y "controlling for Z"

Example 1: Omitted Variables

Another way to look at it:

If we write $Y = \alpha_0 + \alpha_1 X + \epsilon$, (i.e., $\epsilon = \alpha_2 Z + u$), then $E(\epsilon \mid X) = 0$ does not hold:

$$E(\epsilon \mid X) = E(\alpha_2 Z + u \mid X) = E(\alpha_2 X + \alpha_2 v + u \mid X) = \alpha_2 X$$

- ϵ and X are correlated because Z is subsumed in ϵ , and Z is correlated with X • $\hat{\beta}_1^{ols}$ will be biased for α_1
- \bullet bias will be in the direction that makes $E(\epsilon \mid X) = 0$
- $\bullet\,$ In the reg. eq. $Y_i=\beta_0+\beta_1X_i+\epsilon_i,\,Z_i$ is an "omitted variable"

Example 2: Omitted Variables

Suppose "true causal relationship" between Y, X and Z is

$$\begin{split} Y &= \alpha_0 + \alpha_1 X + \alpha_2 Z + u \,, \, u \sim \mathsf{Normal}(0, \sigma_u^2) \\ X &= Z + v \,, \, v \sim \mathsf{Normal}(0, \sigma_v^2) \end{split}$$

Assume Z, u, v all independent exogenous variables, with $Z\sim {\rm Normal}(0,\sigma_z^2)$

To take an extreme case, suppose $\alpha_1 = 0$. Then

- $\bullet~X$ does not "cause" Y
- $\bullet \ Z$ drives both Y and X

Example 2: Omitted Variables

What is $E(Y \mid X)$?

- \bullet We have $E(Y \mid X) = \alpha_0 + \alpha_1 X + \alpha_2 E(Z \mid X)$
- It can be shown that $E(Z \mid X) = \frac{\sigma_z^2}{\sigma_z^2 + \sigma_u^2} X$

•
$$E(Z \mid X)$$
 is linear, i.e.,
 $E(Z \mid X) = \delta_0 + \delta_1 X$ where $\delta_0 = E(Y) - \delta_1 E(X)$ and $\delta_1 = \frac{Cov(X,Z)}{Var(X)}$
• $Cov(X,Z) = E(XZ) = E(Z^2) = Var(Z) = \sigma_z^2$
• $Var(X) = Var(Z) + Var(u) = \sigma_z^2 + \sigma_u^2$

Therefore $E(Y \mid X) = \alpha_0 + \alpha_1 X + \alpha_2 E(Z \mid X) = \alpha_0 + \left(\alpha_1 + \frac{\alpha_2 \sigma_z^2}{\sigma_z^2 + \sigma_u^2}\right) X$

Example 2: Omitted Variables

In the regression model $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, $\hat{\beta}_1^{ols}$ will be unbiased and consistent for $\left(\alpha_1 + \frac{\alpha_2 \sigma_z^2}{\sigma_z^2 + \sigma_u^2}\right)$, not α_1

If we define ϵ so that $Y=\alpha_0+\alpha_1X+\epsilon,$ then $E(\epsilon\mid X)=0$ does not hold

- ϵ subsumes Z, which is correlated with X
- ϵ and X are correlated
- $\hat{\beta}_1$ will be biased for α_1 in a direction that makes $E(\epsilon \mid X) = 0$
- \bullet Again, in reg. eq. $Y_i=\beta_0+\beta_1X_i+\epsilon_i,\,Z_i$ is an "omitted variable"

Example 3: Simultaneity Bias

Suppose the following describes the market for a good

$$\begin{array}{ll} Q^d_t = \delta_0 + \delta_1 P_t + \epsilon^d_t & (\text{Demand Eq } \delta_1 < 0) \\ Q^s_t = \alpha_0 + \alpha_1 P_t + \epsilon^s_t & (\text{Supply Eq } \alpha_1 > 0) \\ Q^s_t = Q^d_t & (\text{Market Clearing}) \end{array}$$

- Q and P represent log quantities and log prices respectively, so δ_1 and α_1 represent price elasticities of demand and supply respectively
- Suppose the demand shock ϵ^d_t and supply shock ϵ^s_y are iid noise terms with zero means and variances σ^2_d and σ^2_s respectively, and are mutually uncorrelated

Example 3: Simultaneity Bias

Market clearing implies

$$\delta_0 + \delta_1 P_t + \epsilon^d_t = \alpha_0 + \alpha_1 P_t + \epsilon^s_t$$

Solving gives

$$P_t = \frac{\alpha_0 - \delta_0}{\delta_1 - \alpha_1} + \frac{\epsilon_t^s - \epsilon_t^d}{\delta_1 - \alpha_1}.$$

Substituting P_t into either the demand or supply equation gives

$$Q_t = \left(\delta_0 + \delta_1 \frac{\alpha_0 - \delta_0}{\delta_1 - \alpha_1}\right) + \frac{\delta_1 \epsilon_t^s - \alpha_1 \epsilon_t^d}{\delta_1 - \alpha_1}$$

72 / 80

٠
Example 3: Simultaneity Bias

This implies

$$\mathit{Var}(P_t) = \frac{\sigma_s^2 + \sigma_d^2}{(\delta_1 - \alpha_1)^2} \quad \text{ and } \quad \mathit{Cov}(P_t, Q_t) = \frac{\delta_1 \sigma_s^2 + \alpha_1 \sigma_d^2}{(\delta_1 - \alpha_1)^2}.$$

Regression of $Q_t = \beta_0 + \beta_1 P_t + \epsilon_t$ gives

$$\hat{\beta}_1 \xrightarrow{p} \frac{Cov(Q_t, P_t)}{Var(P_t)} = \frac{\delta_1 \sigma_s^2 + \alpha_1 \sigma_d^2}{\sigma_s^2 + \sigma_d^2}$$

which is neither the price elasticity of demand nor the price elasticity of supply.

Reason is that the regressor P_t is "endogenous" (so is Q_t)

Session 2.5

Session 2.5 Sampling and Other Issues

- Examples of sampling problems that make sample not representative of population
 - Measurement error
 - Truncated samples

Problem for both estimation of predictive and causal relationships

74 / 80

Sampling Problems: Measurement Error

Suppose $Y=\beta_0+\beta_1X+\epsilon$ but X is only observed with error,

i.e., you only observe $X^* = X + u$.

Assume measurement error u is independent of X. Then

$$\begin{split} Y &= \beta_0 + \beta_1 X + \epsilon \\ &= \beta_0 + \beta_1 (X^* - u) + \epsilon \\ &= \beta_0 + \beta_1 X^* + (\epsilon - \beta_1 u) \\ &= \beta_0 + \beta_1 X^* + v \end{split}$$

where $v=\epsilon-\beta_1 u$

Sampling Problems: Measurement Error

You estimate

$$Y = \beta_0 + \beta_1 X^* + v \quad (1)$$

since only X^{\ast} is available to you However, since u is correlated with X^{\ast}

- $\bullet \ v = \epsilon \beta_1 u \text{ is correlated with } X^*$
- $\bullet \ E(v \mid X^*) = 0 \text{ does not hold}$
- $\bullet \ E(Y \mid X^*) \neq \beta_0 + \beta_1 X^*$
- \bullet Coefficient on X^* in $E(Y \mid X^*)$ is not β_1
- \hat{eta}_1^{ols} from (1) is biased/inconsistent

Sampling Problems: Truncated Sampling

Suppose $E(Y \mid X) = \beta_0 + \beta_1 X$ with $\beta_1 > 0$

- But suppose you do **not** have a random sample $\{X_i, Y_i\}_{i=1}^n$
- In particular, suppose you have a "truncated sample" where you cannot observe any observation where $Y_i > c$.
- This induces correlation between ϵ_i and X_i
 - large X_i together with large positive ϵ_i makes $Y_i > c$ more likely
 - large X_i that are observed are those with lower or negative values of ϵ_i
 - implies a negative correlation between X_i and ϵ_i

Sampling Problems: Truncated Sampling

Specification Issues

What if $E(Y \mid X) \neq \beta_0 + \beta_1 X$?

e.g. what if $E(Y \mid X) = \beta_0 + \beta_1 X + \beta_2 X^2$

•
$$\hat{Y} = \hat{\beta}_0^{ols} + \hat{\beta}_1^{ols} X$$
 will be a biased estimate of $E(Y \mid X)$

- If $E(Y \mid X) \approx \beta_0 + \beta_1 X$, then $\hat{Y} = \hat{\beta}_0^{ols} + \hat{\beta}_1^{ols} X$ will (hopefully) only be a slightly biased estimate of $E(Y \mid X)$
- "Local approaches" may give unbiased estimates, but may have large standard errors
- The simple linear regression model, though slightly biased, may have smaller standard errors

79/80

Roadmap

- (Previous) Session 1: Statistics Review
- This Session 2: Simple Linear Regression
- Next Session 3: Estimator Standard Errors; Multiple Linear Regression
- Session 4: Matrix Algebra
- Session 5: OLS using Matrix Algebra
- Session 6: Hypothesis Testing
- Session 7: Prediction
- Session 8: Instrumental Variable Regression
- Session 9: Logistic and Other Regressions
- Session 10: Panel Data Regressions
- Session 11: Introduction to Time Series
- Session 12: Time Series Regressions

80 / 80