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ECON207 Course Objectives

@ Second course in UG econometrics
@ Go deeper into theoretical foundations of OLS estimation of linear regression model
when it works well
when it doesn’t work so well (or not at all)
how to use the models

e using language of matrix algebra (needed for further work)
@ Introduction to more advanced topics

e instrumental variables

e time series regressions

o panel data

o limited dependent variable models
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Session 1

e A Bit of Math
e Summation notation, probability prerequisites
o We will cover more math throughout the course, as needed

@ Statistics Review
e Estimation

e Hypothesis testing

@ Course Administrative Arrangements
o Course webpage vs Course elLearn page, Grading, Assignments
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A Little Bit of Math
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Session 1.1

Session 1.1 Math Review
@ Summation Notation

@ Probability Prerequisites
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A Little Bit of Math
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Summation Notation

: no :
Given a set of numbers {z,;}"" | = {2y, 25, ..., 2, }, define

Z$Z’=$1+I2+...+$n
=1

Two Rules:
° 2?21(%’ +b;) = Z?:l a; + Z:;l b,

n n .
@ > . ,ca;=c),  a; wherec issome constant value
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A Little Bit of Math
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Summation Notation

Two Results: For any set of numbers {x,, y;}1*; we have

@ Sum of deviations from sample mean is zero

zn:@i_f):zn:x 2”: —nx =0, where f:%zn:g;z
' i=1

x <- c(1, 4, 2, pi, exp(1), 100000) # insert whatever numbers you want
sum(x - mean(x))

[1] -3.637979e-12

ECON207 Session 1 Corrected Version: 20 Aug 2024

6/60



A Little Bit of Math
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Summation Notation

@ Sum of product of deviation from sample means (alternative expressions)

=1

Z(x —7)(y Zw — )y Zx ):inyi—nfg

x <- c(1, 4, 2, pi, exp(1), 1000) # insert whatever numbers you want

y <- c(5, 3029, 2911, sin(4.32), 1.43, 403) # insert whatever numbers you want
c(sum((x - mean(x))*(y-mean(y))), sum((x-mean(x))*y), sum(x*(y-mean(y))),
sum(x*y) - length(x)*mean (x)*mean(y))

[1] -650747.2 -650747.2 -650747.2 -650747.2
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Summation Notation

Proof of first equality

=1 =1 =1
B L W
=1 =1
=0
= (z; =Dy,
=1
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A Little Bit of Math
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Some Probability Prerequisites

Random variable, probability distribution function, mean (expected value) and variance,
median

If X, Y are random variables, and a, b are constants
o Var(X) = E((X — E(X))?) = E(X?) — E(X)?
o CouX,)Y)=E(X—EX))(Y—E(Y)))=EXY)—-EX)E(Y)
e F(aX+b)=aFE(X)+Db
o Var(aX +b) = a®Var(X)
o Var(aX +bY) = a?Var(X) + b*Var(Y) + 2ab Cov(X,Y)
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Agenda A Little Bit of Math
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Some Probability Prerequisites

o X and Y independent: fy y(7,y) = fx(z)fy(y)
@ X and Y independent = Cou(X,Y’) = 0 but opposite implication need not hold

@ Some distributions:

Normal (Gaussian) “Normal(u, o02)
Chi-sq “x2(v)"

Student-t “t(v)"

Snedecor’s F “F(u,v)"

If X and Y are Normal variables, then aX + bY is Normal

More concepts/results to come..
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Statistics Review

900000000000 00000000000O0000000O0O000000000000000

Session 1.2

Session 1.2 Statistics Review

@ Population vs Model vs Sample
e Evaluating Estimators
e Unbiased Estimators
o Efficiency
o Consistency
e Estimator Standard Errors
@ Hypothesis Testing

ECON207 Session 1 Corrected Version: 20 Aug 2024 11/60
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Statistics Review

Statistics: Learning about a certain population using information from a (possibly small)
sample from that population

e.g. Population of interest: Non-institutional employed civilians aged 16 and above in
US in 2018

Population Characteristics of Interest:
© "“Representative” Hourly Earnings
@ Variation in Hourly Earnings across Population
@ Relationship between Hourly Earnings and Years of Schooling (Next week)

Random sample of n individuals from this population
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Random Sample

Random Sample

@ Every individual in population has equal chance of getting selected (so sample
“looks like" the population)

@ One individual sampled does not make another more or less likely to be sampled
Data in earnings2019.csv

@ Collected by U. Michigan's Institute for Social Research as part of their 2019 wave
of their Panel Study of Income Dynamics

e N = 4946 individuals after filtering for employment (defined as > 1000 hrs worked
in 2018)
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Data Example

library(tidyverse)

library (patchwork)

library(latex2exp)

dat <- read_csv("data\\earnings2019.csv", show_col_types=FALSE)
head(dat,3)

# A tibble: 3 x 11
age height educ feduc meduc tenure wexp race male earn totalwork

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl>

1 59 67 12 3 3 5 30 White 0 36.3 1652
43 63 10 4 3 7 13 White 1 6.46 1548

3 28 74 12 2 3 6 9 White 113.1 2460
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Data Example (Summary of Selected Variables)

dat 7%>% select(-c(race, feduc, meduc)) %>’ summary(dat)

age
Min. 119

1st Qu.:33.
.00
.99
.00
.00

Median :40
Mean 141
3rd Qu.:51
Max. :82
wexp
Min. :
1st Qu.:

Mean

3rd Qu.:13.
.000

Max. :51

1
3
Median : 7.
9.251

.00

00

.000
.000

000

000

height

Min.
1st Qu.:
Median
Mean

3rd Qu.:
Max.

:40.
64.
167.
.45
.00
.00

Anthony Tay

00
00
00

.0000
.0000
.0000
.4646
.0000
.0000

educ
Min. : 7.00
1st Qu.:12.00
Median :14.00
Mean :14.31
3rd Qu.:16.00

Max. :17.00
earn
Min. . 0
1st Qu.: 15
Median : 22
Mean : 29
3rd Qu.: 35
Max. 1628

ECON207 Session 1

Min.
1st
Medi
Mean
3rd
Max.

. 7428
.5048
.9995
.2315
.0235
.9308

tenure
1
Qu.: 3.
an : 6
9.
Qu.:13.
:54.
tota
Min.
1st Qu
Median
Mean
3rd Qu
Max.

.000

000

.000

177
000
000
lwork
:1000
.:1936
:2080
12182
.:2428
:5824

Corrected Version: 20 Aug 2024
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Data Example (Distribution of earn and In earn)

0.03+
0.6
b 0.02+ 2‘ 0.4
@ ®
c c
[} ()
=] =
0.01- 0.2
0.00 L 0.0
0 200 400 600 0 2 4 6
earn log(earn)
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Statistical Model

Statistical Model — A stylized description of the population and your sample {Y;} ;

Eg Y, i Normal(u, o?) where

@ Y, is earnings for individual ¢

@ "iid" stands for independently and identically distributed (another interpretation of
“random sample”)

Not a good model!

Better for log(earn) than earn, but let's stick with earn for the moment
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Statistical Model

It turns out we don't need to specify distribution fully

We can assume

Y.

(2

iid such that E(Y;) = and Var(Y;) =0? < oo foralli=1,..,n.

Very general model! Assumes only that:
@ sample is a random sample

@ population is well-represented by some distribution with a mean and a variance
(there are some distributions without finite mean / variance)

Suppose we want to estimate y (population mean) and o2 (population variance)

ECON207 Session 1 Corrected Version: 20 Aug 2024 18 /60
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Statistical Estimators

Since uis E(Y) and 02 is Var(Y) = E(Y — E(Y))?) = E(Y?) — E(Y)?, suppose
we decide

~ 1z
o= — Z “Sample Mean”
n; i=1
~ 1 & 12 ., 2 I .
— Z( Y)2=—->Y2-Y (wel give this a name soon..)
?’L =1 n =1

Is this a good idea?

We need to define what “good” means..

ECON207 Session 1 Corrected Version: 20 Aug 2024 19/60
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~

One commonly used criterion is unbiasedness: E(6) =6

Sample mean is unbiased for true mean (under our stated conditions):
— 1x» 12 1
Proof: E(Y)=E|=>Y,|==> EY,)=—nu=u
ni=1 ni=1 n

@ You will not systematically over- or under-estimate the population mean.

@ (Thought experiment) If, say, 200 people went to the population and each
obtained a random sample of n individuals and calculated the sample mean. Each
would obtain a different sample mean, but their sample means will be nicely
centered around the true (unknown) population mean.

ECON207 Session 1 Corrected Version: 20 Aug 2024 20/60
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Bias

Unfortunately, o2 is a (downward) biased estimator of o2

Proof:

@ Since Var(Y;) = E(Y}?) — E(Y;

T

)2, we have E(Y?) = 02 + p?
@ Since Var(Y) = E(?Q) (?)2

__ 9 _
and Y is unbiased, we have E(Y ") = Var(Y) + p?

Furthermore, we have Var(?) = L.
n

- 1 IS 1< 1 o?
Var(Y)=Var | =) Y, | ==)» Var(Y;) = — 2_ 22
ar(Y') ar(n; Z) n; ar(Y;) nQ;U 3o -

Therefore
E’\Q/_lnEyﬂ EY) = o2 2 o? 2_?’L—12
(%) = S L BO?) — BV =02 42 = T - = o

ECON207 Session 1 Corrected Version: 20 Aug 2024 21/60
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Bias

Fortunately, in this case, there is an obvious unbiased estimator:

n

- ~ 1 _
0% = n i 102 =1 ;(YZ —Y)? (sample variance)

We call 02 the biased sample variance

(Why divide by n —17)

@ Only n — 1 independent pieces of information in {Y; — Y} since 3" (Y; —Y) =0
@ Given {Y; —Y,...Y, 1 —Y,Y,,, —Y,....Y, — Y}, you can calculate ¥; — Y’

@ you used one “degree-of-freedom” when you used the data to calculate Y

@ If Y was obtained from a different sample, then you should divide by n, not n — 1, to

get an unbiased estimator for 2
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Estimator Standard Error

We should also try to get some idea of the size of estimation error:

2
— O
We have already shown Var(Y) = —
n
— o2
Can replace o2 with its estimate: Var(Y) = —
n
- o2
Standard error of sample mean: s.e.(Y) =1/ —
n

Anthony Tay ECON207 Session 1
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Estimator Standard Error

—

What is the “standard error for o2"7?
Not conventionally computed as part of analysis
@ Focus usually on the mean

@ sample variance usually computed in order to compute standard error of the sample
mean

@ Nonetheless, a valid question
o all estimates come with estimation error

e good exercise!
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Estimator Standard Error

Course Admin

Approach 1 (not a good one in this circumstance):

jid .
If we assume Y; ‘" Normal(p, 02), then it can be shown that

—1)o2
—(n 2)0 ~ x2(n —1) which has a variance of 2(n —1)
o
Then , )
S\ o o L _ 20
Vor(e%) = G~V =

We can replace 02 with 02 to get

n—1
ECON207 Session 1
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Estimator Standard Error

For our data, we have

y <- dat$earn; N <- length(y)
muhat <- mean(y); s2hat <- var(y)
muhatse <- sqrt(s2hat/N); s2hatse <- sqrt(2+s2hat~2/(N-1))
cat("sample mean:", round(muhat,3), " s.e.:", round(muhatse,3), "\n")
cat("sample variance:", round(s2hat,3),

" s.e.:", round(s2hatse,3), "(don't trust this s.e.)\n")

sample mean: 29.232 s.e.: 0.368
sample variance: 670.651 s.e.: 13.487 (don't trust this s.e.)

The s.e. of the sample variance obtained here should not be trusted, since it is based on
a formula derived assuming the data is Normally distributed, but our data is far from
Normally distributed
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Estimator Standard Error

Approach 2: hunker down and derive a formula for the variance of the sample variance
without assuming Normality. There is a formula (we'll omit the proof :))

Var(o?) — % (u4 _ne i’&) where 11, = E((Y — E(Y))Y)

n

@ /1, can be estimated by 11, = (1/n) Z?Zl(YZ. —Y)4

e If Y, is normally distributed, then p, = 30* and Var(c?) reduces to 20%/(n — 1)
muéd = (1/N)*sum((y-mean(y)) "4)
VY <= (1/N)*(mud - (N-3)/(N-1)*s2hat~2)

cat("sample variance:", round(s2hat,3), " s.e. of sample variance:", round(sqrt(VV),3))

sample variance: 670.651 s.e. of sample variance: 95.358
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Estimator Standard Error (The Bootstrap)

Approach 3: The Bootstrap

—(r)
If R people obtained indp. random samples from pop. and calculated ;™) and o2

— 1 R —(r =
We can estimate standard error as s.e.(02) = \/Rl (02 2)2
—tr=1

Idea of the bootstrap: resample from {Y7,...,Y, } with replacement to get
v Y for b=1,..,B

—(b)
Calculate for each bootstrap sample: 02  and then calculate

— 1 B~ =
bootstrap s.e.(02) = 51 2(02 —02)2
T =1

ECON207 Session 1
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Estimator Standard Error (The Bootstrap)

Can do the same for s.e. of the mean and the median!

set.seed(456)
B <- 200 ## Bootstrap replication sample
bmeans <- bvars <- bmeds <- rep(NA, B) ## To store the bootstrapped wvars, means, medians
for (b in 1:B){
ysmpb <- sample(y, 4946, replace=T) # Sample with replacement from orig. smp.
bmeans [b] <- mean(ysmpb) # can do the same for the mean!
bvars[b] <- var(ysmpb) # bootstrapped sample variances
bmeds[b] <- median(ysmpb) # can do the same for the medians!
}
cat("sample mean: ", round(muhat, 3), " s.e.:", round(muhatse,3),
" bootstrap s.e.:", round(sqrt(var(bmeans)),3),"\n")
cat("sample var.: ", round(s2hat, 3), " s.e.:", round(s2hatse,3),
" bootstrap s.e.:", round(sqrt(var(bvars)),3),"\n")
cat("sample median.: ", round(median(y), 3), " bootstrap s.e.:", round(sqrt(var(bmeds)),3),"\n")

sample mean: 29.232 s.e.: 0.368 bootstrap s.e.: 0.357
sample var.: 670.651 s.e.: 13.487 bootstrap s.e.: 100.867
sample median.: 23 bootstrap s.e.: 0.314
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Efficiency

Smaller estimator variance is better than larger estimator variance
Qn: Are there other unbiased estimators for p with smaller variance?
(Partial answer, limiting ourselves to unbiased linear estimators)

Linear estimator for p: estimator of the form i = Z?:l w,Y;

Unbiased of [i requires Z?Zl w; =1
n
E(p)=FE Zinz‘ = ZwiE(Y;) = Mzwz‘ = p if sz‘ =1
i=1 ; ' '

ECON207 Session 1 Corrected Version: 20 Aug 2024 30/60
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Efficiency

Eg.
@ sample mean is a linear unbiased estimator: weights w;, = 1/n, i =1,...,n, sums
to one.
2 2n L 2
o [ =Y+ +—Y, + -+ —=Y = —Y,
1 n(n+1) 1 n(n+1) n(n+1) Z:zzl n(n+1)

fi, is a linear estimator for u, and unbiased since weights sum to one

SR . 2i 2 nn+4l)
Zwi_zn(n+1)_n(n+1)21_n(n+1) 2 =1

=1 1=1

@ [iy =y, is a linear unbiased estimator
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Efficiency

Under assumed conditions, sample mean has smallest variance among all linear
unbiased estimators “Best Linear Unbiased”

n n
Proof: Let fi = > w,Y; where " w; = 1. Let w; = * + v,.

n
i=1 i=1

Since w,; sum to one, v; sum to zero. Then

~ mr1 2 o~ (1 2u,
Var (@) = Z (EJFU") Var(Y;) = o Z(ﬁJFTJFUi)
i—1 i=1
2 9,2 n 2 n o
=7 ;27 vz—l-aQva = —+J2va > Var(Y)
L i=1 i=1 1=1

Equality holds only if Y- v =0, i.e, v; =0foralli =1,...,n, ie, when w; = 1/n
ECON207 Session 1 Corrected Version: 20 Aug 2024 32/60
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MSE and the Bias-Variance Tradeoff

Choosing BLU estimators places priority on unbiasedness

Alternative measure of quality of estimator — Mean Square Estimator Error

MSE(0) = E((6— 6)?)
= Var(é —0) + (E(é —0))°

= Var() + (E(0) — 0)*

. : : . \2
= Estimator Variance + (Estimator Bias)

Choosing estimator to minimize MSE allows for bias-variance trade-off
: jid ~ g .
Can show that if Y; "> Normal(y, 02), then MSE(02) < MSE(02) (exercise)
ECON207 Session 1 Corrected Version: 20 Aug 2024
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Consistency

. o 2

E(Y)=pand Var(Y):U——>0asn—>oo
n

As n — 0o, sample mean “converges” to u

Convergence in Probability A sequence of random variables X, n =1,2, ..,
converges in probability to ¢ if for any € > 0, we have

lim Pr(|X, —c|>€)=0.

n—oo

p
We say X,, — ¢

An estimator is consistent if it converges in probability to what it is estimating

ECON207 Session 1 Corrected Version: 20 Aug 2024 34/60
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Consistency
Under our stated assumptions, the sample mean is consistent for the population mean

Khinchine’s Weak Law of Large Numbers (WLLN) If {Y;}? is iid with
E(Y;) = p < oo for all 7, then

— P
Y, —pu
where Y, is the sample mean based on n observations.

@ There are many “Laws of Large Numbers” each stating different conditions under
which the sample mean is consistent

@ “Weak" refers to the kind of probabilistic convergence used here (there are others)

@ Bias and variance going to zero is actually “convergence in mean square”, but this
implies convergence in probability
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Consistency (Simulation Example)

Suppose 200 people each took independent random samples of size n from population
Suppose population is well-represented by Chi-Sq(1) distribution (mean = 1)
Plot distribution of sample mean for n = 20, 50, 100, 500, 1000, 2000

set.seed(1701)
Persons <- 200
MaxSampleSize <- 2000
AllSamples <- rchisq(Persons*MaxSampleSize, df=1) %>’ matrix(ncol=Persons)
smplsizes <- c(20, 50, 100, 500, 1000, 2000)
plotsl <- vector("list", length=6)
for (i in 1:length(smplsizes)){
n <- smplsizesl[i]
means <- colMeans(AllSamples[1:n,])
datmeans <- data.frame(smplmeans=means)
plots1[[i]] <- ggplot(data=datmeans, aes(x=smplmeans)) +
geom_histogram(aes(y=..density..), color="black", fill="lightblue", binwidth=0.05) +
labs(title = paste("sample size", smplsizes[i])) + x1im(0,3) +
theme_bw() + theme(plot.title = element_text(size=20))
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Consistency (Simulation Example)

(plotsi[[1]] | plotsi[[2]] | plotsi[[3]]) / (plotsi[[4]] | plotsi[[5]1 | plotsi[[611)

sample size 20 sample size 50 sample size 100
15
s
>
10
£ 2 g’
0s .
00 0 0
§ i 3 3 b i 3 3 8 i 3 3
smplmeans smplmeans smplmeans
sample size 500 sample size 1000 sample size 2000
25-

density
density

° & 10.0-
75-
4 250
2
3 50-
2 25
25-
0 00 -
0 H [ H 3

H :
smplmeans

T
smplmeans
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Consistency

Also, we say that X, — Y, if X, — Y, =0

p
An important property of convergence in probability: if g(.) is continuous, and X, — ¢,
then g(X,,) — g(c)
. —2
@ Suppose we want to estimate p2. A consistent estimator is i2 =Y

—2 P

7i>ﬂ = Y — pu?

ECON207 Session 1 Corrected Version: 20 Aug 2024 38/60
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Consistency

—2
Note that Y is not an unbiased estimator of 2, since

o Var(Y)=E(Y)—EYR=EY )12 = EY )=+ Var(Y) > i

Jensen’s Inequality:
e If g(.) is convex, then F(g(X)) > g(F(X))
e If g(.) is concave, then E(g(X)) < g(E(X))
e Equality holds if g(.) is linear

2

e.g. g(x) = z* is strictly convex

ECON207 Session 1 Corrected Version: 20 Aug 2024 39/60
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~_ 1& 2 _ L 2 2. - 2
02=—=>(Y,-Y) =—=>Y?—Y is consistent for o
ni=1 =1
Proof:
e Y iid with E(Y;) = p and Var(Y;) = 0 = Y7 iid with E(Y}?) = 02 + 12
12 p —2 P
o — Y Y2 o2+ pandY — p?
ni=1
~_ 1 2 _y2 P2 2 2 2
@ Therefore 02 = — > Y —Y — o +pu*—pu*=o0
=1
- 1 L 2 - . 2 . - n 1
02 = > (Y; — Y)? is also consistent for o< since 02 = —— 0?2
n—1 i=1 n—1
—1 as n—oo

ECON207 Session 1 Corrected Version: 20 Aug 2024
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Hypothesis Testing (Two-Sided)

Suppose we want to test
Hy:p=po vs Hy:p pg

Intuitive Idea:
o If = u,y we expect i to be “near” p,
o If i is far from p, perhaps H : p = p is incorrect
o If [ is "too far" from p, take this as statistical evidence that p # p

But how far is too far?

ECON207 Session 1 Corrected Version: 20 Aug 2024 41/60
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Hypothesis Testing (Two-Sided)

i ‘
Assume for the moment that Y; < Normal(yg,02), i = 1,...,n

We have
iid - o’
Y, ~ Normal(pg,0%) = Y ~ Normal (uo, —)
n

— V= 1) ~ Normal(0, 1)
o?/n

t-statistic

ECON207 Session 1 Corrected Version: 20 Aug 2024 42 /60



Statistics Review e Admin

0000000000 0000O00O0000000O00000000O0e0000000000000

Hypothesis Testing (Two-Sided)

a/2 a/2

~Ca 0 Ca

Reject Hy, if t > ¢, or t < —c,, where c_, is such that o = 0.01,0.05,0.10

i.e., reject if Pr(|t| > ¢,) < a given u = u, (Prob of rejecting correct null)
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Hypothesis Testing (Two-Sided)

NVal <- c(20, 50, 100, 200, 400)
alphaVal <- c(0.01, 0.05, 0.1)
Critval <- matrix(rep(0,length(NVal)*length(alphaVal)), ncol = length(NVal))
colnames(Critval) <- pasteO("N=",6NVal)
rownames (Critval) <- paste0("alpha=",alphaVal)
for (i in 1:length(alphaVal)){
for (j in 1:length(NVal)){
Critvalli, j] = qt(l-alphaVall[i]/2, df=NVal[jl-1)
3
}
round(Critval, 3)

N=20 N=50 N=100 N=200 N=400
alpha=0.01 2.861 2.680 2.626 2.601 2.588
alpha=0.05 2.093 2.010 1.984 1.972 1.966
alpha=0.1 1.729 1.677 1.660 1.653 1.649
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Hypothesis Testing (Two-Sided)

p/2 p2

-t

Equivalently, reject Hyy : = py if “p-value” Pr(|t| > c,) is less than «
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Asymptotic Normality

When N — oo, the t-distribution converges to the Normal(0,1)

Then critical values ¢ 1, ¢ g5 and ¢y 1o are 2.576, 1.96 and 1.645 respectively

e What if Y; is not Normally distributed? Then t-statistic does not have t
distribution.

However, we have the following result
Lindeberg-Levy Central Limit Theorem: If {Y;}!; are iid with E(Y;) = u and
Var(Y;) = 02 < oo for all i, then

VNY —p) 4 Normal(0, o2)
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Asymptotic Normality (Simulation Example)

Continuation of Simulation Example (200 people drawing independent samples from
population)

n = 5,10, 50, 100, 500, 1000
Plot distribution of \/n(Y,, — ) (here = 1)

plots2 <- vector("list", length=6)
smplsizes <- c(5, 10, 50, 100, 500, 1000)
for (i in 1:length(smplsizes)){
n <- smplsizesl[i]
means <- colMeans(AllSamples[1:n,])
datmeans <- data.frame(scaledmeans=sqrt(n)*(means-1))
plots2[[i]] <- ggplot(data=datmeans, aes(x=scaledmeans)) +
geom_histogram(aes(y=..density..), color="black", fill="lightblue", binwidth=0.2) +
stat_function(fun=dnorm, args = with(dat, c(mean=0, sd=sqrt(2))), color="blue", size=1) +
x1lim(-4, 4) + ylim(0, 0.5) + labs(title = paste("sample size", smplsizes[i])) +
theme_bw() + theme(plot.title = element_text(size=20))
}
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Asymptotic Normality (Simulation Example)
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Hypothesis Testing (Two-Sided)

d
@ “—" means convergence in distribution

@ when n is large, pdf of LHS is approximately the pdf of the Standard Normal

@ Can also be shown that

Y — Y —
v 2 = AR Normal(0, 1)

o? \/ﬁ/n

You can replace 02 with o2 or any other consistent estimator of o2

When 7 is large, can make the approximation ¢ ~ Normal(0, 1), where ~ means

“approximately distributed”, even when Y/ is not Normally distributed
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Hypothesis Testing (Two-Sided) Example

For our data

Hy:p=30vs Hy:p+# 30

y <- dat$earn; N<- length(y); muhat <- mean(y); s2hat <- var(y)
t <- (muhat - 30)/sqrt(s2hat/N)

pval_t <- 2*pt(abs(t), df=N-1, lower.tail = FALSE)

pval_n <- 2*pnorm(abs(t), lower.tail = FALSE)

cat("t-stat:", t)

cat("\n p-value (t-dist):", pval_t)

cat("\n p-value (Standard Normal):", pval_n)

t-stat: -2.086885

p-value (t-dist): 0.0369496
p-value (Standard Normal): 0.03689851
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Hypothesis Testing (One-Sided)

Hy:pp<pg vs Hy:pp2> pug

Reject p if t-statistic is greater then ¢, where ¢, is that value such that
Pr(t > ¢,) = a under the null, & = 0.01,0.05, 0.10.
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Estimation Again

Should we have worked with log(earn) instead of earn?

0.03 1 0.64 \

> >

£'0.02 =

G G 0.44

© G

© 0.01 1 T .24

000- T T T T OO- T T T T
0 200 400 600 0 2 4 6

ave. earn/hr log ave earn/hour
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Estimation Again

To help us think about this, let's assume

InY, £ Normal(p, 02) for all i
where Y is earnings of individual ¢ (seems reasonable!)
Then Y] w Log-normal(p, o2) for all i

o E(Y;) = elt27” = ehezd”
o Var(Y;) = e2+7° (7" — 1)
o Median(Y;) = et
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Estimation Again

Can estimate = E(InY) and 0% = Var(InY) in the usual way

1 n o 1 n
~ _ - 5 ~\2
= - ;:1 InY, and o2 = — ;Zl(ln Y, — [i)

But we are interested in mean and variance of Y, not InY — must convert back!

e estimate of mean hourly earnings: e”e27" (Not e”)

@ estimate of median hourly earnings: e*

. . . 402/ o2
e estimate of variance of hourly earnings: e?#17" (7" — 1)

Also need to compute s.e. (use bootstrap?)
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Estimation Again

y <- log(dat$earn)
n2ln_mu <- function(m, v){exp(m+0.5%v)}
n2ln_vr <- function(m, v){exp(2*m + v)*(exp(v) - 1)}
n2ln_md <- function(m, v){exp(m)}
m <- mean(y)
v <- var(y)
earnmean <- n2ln_mu(m,v)
earnvar <- n2ln_vr(m,v)
earnmed <- n2ln_md(m,v)
set.seed(456)
B <- 200 ## Bootstrap replication sample
bvars <- bmeans <- bmeds <- rep(NA, B) ## To store the bootstrapped statistics
for (b in 1:B){
ysmpb <- sample(y, 4946, replace=T) # Sample with replacement from orig. smp.
ml <- mean(ysmpb) # mean of bootstrap sample of 1ln(earn)
vl <- var(ysmpb) # variance of boostrap sample of ln(earn)
bmeans[b] <- n2ln_mu(ml,vl) # convert to mean of earn, and store
bvars[b] <- n2ln_vr(mi,vi) # convert to variance of earn, and store
bmeds[b] <- n2ln_md(mi1,v1) # convert to median of earn, and store

}
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Estimation Again

cat("mean hr. earn.: " round(earnmean, 3),

" s.e.:", round(sqrt(var(bmeans)),3), "\n")
cat("var. hr. earn.: ", round(earnvar, 3),

" s.e.:", round(sqrt(var(bvars)), 3), "\n")
cat("median hr. earn.: ", round(earnmed, 3),

" s.e.:", round(sqrt(var(bmeds)),3),"\n")

mean hr. earn.: 28.907 s.e.: 0.305

var. hr. earn.: 443.902 s.e.: 20.8
median hr. earn.: 23.361 s.e.: 0.215
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Session 1.3

Session 1.3 Course Arrangements
@ Course Arrangements
o Webpages, reading material, software

o Grading system
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Course Arrangements

e Course webpage vs course elearn page
@ Course Notes
e Software: R
e Not covered in class (learn by playing with code supplied)

o Needed for Assignment

e NOT EXAMINABLE (no stress!)
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Course Arrangements (Evaluation)

o Individual Assignments 50%
o Short Weekly Review Questions (20%), graded based on submission, feedback via
detailed answer sheet
o Three longer assignments (30%), graded in detail.
e Exam 40%
o Closed book, calculators allowed, no cheat sheet

o Class and Forum Participation 10%

e ask/answer questions in class
e ask/answer questions on forum page
e post typos and errors on forum page
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Roadmap

This Session 1: Statistics Review

Next Session 2: Simple Linear Regression
Session 3: Estimator Standard Errors; Multiple Linear Regression
Session 4: Matrix Algebra

Session 5: OLS using Matrix Algebra
Session 6: Hypothesis Testing

Session 7: Prediction

Session 8: Instrumental Variable Regression
Session 9: Logistic and Other Regressions
Session 10: Panel Data Regressions
Session 11: Introduction to Time Series
Session 12: Time Series Regressions
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