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ECON207 Course Objectives

Second course in UG econometrics
Go deeper into theoretical foundations of OLS estimation of linear regression model

when it works well
when it doesn’t work so well (or not at all)
how to use the models
using language of matrix algebra (needed for further work)

Introduction to more advanced topics
instrumental variables
time series regressions
panel data
limited dependent variable models
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Session 1

A Bit of Math
Summation notation, probability prerequisites
We will cover more math throughout the course, as needed

Statistics Review
Estimation
Hypothesis testing

Course Administrative Arrangements
Course webpage vs Course eLearn page, Grading, Assignments
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Session 1.1

Session 1.1 Math Review

Summation Notation
Probability Prerequisites
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Summation Notation

Given a set of numbers {𝑥𝑖}𝑛
𝑖=1 = {𝑥1, 𝑥2, … , 𝑥𝑛}, define

𝑛
∑
𝑖=1

𝑥𝑖 = 𝑥1 + 𝑥2 + ... + 𝑥𝑛

Two Rules:
∑𝑛

𝑖=1(𝑎𝑖 + 𝑏𝑖) = ∑𝑛
𝑖=1 𝑎𝑖 + ∑𝑛

𝑖=1 𝑏𝑖

∑𝑛
𝑖=1 𝑐𝑎𝑖 = 𝑐 ∑𝑛

𝑖=1 𝑎𝑖 where 𝑐 is some constant value
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Summation Notation

Two Results: For any set of numbers {𝑥𝑖, 𝑦𝑖}𝑛
𝑖=1 we have

Sum of deviations from sample mean is zero

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥) =
𝑛

∑
𝑖=1

𝑥𝑖 −
𝑛

∑
𝑖=1

𝑥 = 𝑛𝑥 − 𝑛𝑥 = 0 , where 𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

x <- c(1, 4, 2, pi, exp(1), 100000) # insert whatever numbers you want
sum(x - mean(x))

[1] -3.637979e-12
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Summation Notation

Sum of product of deviation from sample means (alternative expressions)

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) =
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)𝑦𝑖 =
𝑛

∑
𝑖=1

𝑥𝑖(𝑦𝑖 − 𝑦) =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖 − 𝑛𝑥 𝑦

x <- c(1, 4, 2, pi, exp(1), 1000) # insert whatever numbers you want
y <- c(5, 3029, 2911, sin(4.32), 1.43, 403) # insert whatever numbers you want
c(sum((x - mean(x))*(y-mean(y))), sum((x-mean(x))*y), sum(x*(y-mean(y))),
sum(x*y) - length(x)*mean(x)*mean(y))

[1] -650747.2 -650747.2 -650747.2 -650747.2
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Summation Notation
Proof of first equality

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) =
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)𝑦𝑖 −
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)𝑦

=
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)𝑦𝑖 − 𝑦
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)
⏟⏟⏟⏟⏟

= 0

=
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)𝑦𝑖
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Some Probability Prerequisites

Random variable, probability distribution function, mean (expected value) and variance,
median
If 𝑋, 𝑌 are random variables, and 𝑎, 𝑏 are constants

Var(𝑋) = 𝐸((𝑋 − 𝐸(𝑋))2) = 𝐸(𝑋2) − 𝐸(𝑋)2

Cov(𝑋, 𝑌 ) = 𝐸((𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌 ))) = 𝐸(𝑋𝑌 ) − 𝐸(𝑋)𝐸(𝑌 )
𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏
Var(𝑎𝑋 + 𝑏) = 𝑎2Var(𝑋)
Var(𝑎𝑋 + 𝑏𝑌 ) = 𝑎2Var(𝑋) + 𝑏2Var(𝑌 ) + 2𝑎𝑏 Cov(𝑋, 𝑌 )

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 9 / 60



Agenda A Little Bit of Math Statistics Review Course Admin Roadmap

Some Probability Prerequisites

𝑋 and 𝑌 independent: 𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌 (𝑦)
𝑋 and 𝑌 independent ⇒ Cov(𝑋, 𝑌 ) = 0 but opposite implication need not hold
Some distributions:

Normal (Gaussian) “Normal(𝜇, 𝜎2)”
Chi-sq “𝜒2(𝑣)”
Student-t “𝑡(𝑣)”
Snedecor’s F “𝐹(𝑢, 𝑣)”

If 𝑋 and 𝑌 are Normal variables, then 𝑎𝑋 + 𝑏𝑌 is Normal
More concepts/results to come…
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Session 1.2

Session 1.2 Statistics Review

Population vs Model vs Sample
Evaluating Estimators

Unbiased Estimators
Efficiency
Consistency

Estimator Standard Errors
Hypothesis Testing
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Statistics Review

Statistics: Learning about a certain population using information from a (possibly small)
sample from that population
e.g. Population of interest: Non-institutional employed civilians aged 16 and above in
US in 2018
Population Characteristics of Interest:

1 “Representative” Hourly Earnings
2 Variation in Hourly Earnings across Population
3 Relationship between Hourly Earnings and Years of Schooling (Next week)

Random sample of 𝑛 individuals from this population
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Random Sample

Random Sample
Every individual in population has equal chance of getting selected (so sample
“looks like” the population)
One individual sampled does not make another more or less likely to be sampled

Data in earnings2019.csv

Collected by U. Michigan’s Institute for Social Research as part of their 2019 wave
of their Panel Study of Income Dynamics
N = 4946 individuals after filtering for employment (defined as ≥ 1000 hrs worked
in 2018)
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Data Example

library(tidyverse)
library(patchwork)
library(latex2exp)
dat <- read_csv("data\\earnings2019.csv", show_col_types=FALSE)
head(dat,3)

# A tibble: 3 x 11
age height educ feduc meduc tenure wexp race male earn totalwork

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
1 59 67 12 3 3 5 30 White 0 36.3 1652
2 43 63 10 4 3 7 13 White 1 6.46 1548
3 28 74 12 2 3 6 9 White 1 13.1 2460
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Data Example (Summary of Selected Variables)
dat %>% select(-c(race, feduc, meduc)) %>% summary(dat)

age height educ tenure
Min. :19.00 Min. :40.00 Min. : 7.00 Min. : 1.000
1st Qu.:33.00 1st Qu.:64.00 1st Qu.:12.00 1st Qu.: 3.000
Median :40.00 Median :67.00 Median :14.00 Median : 6.000
Mean :41.99 Mean :67.45 Mean :14.31 Mean : 9.177
3rd Qu.:51.00 3rd Qu.:70.00 3rd Qu.:16.00 3rd Qu.:13.000
Max. :82.00 Max. :83.00 Max. :17.00 Max. :54.000

wexp male earn totalwork
Min. : 1.000 Min. :0.0000 Min. : 0.7428 Min. :1000
1st Qu.: 3.000 1st Qu.:0.0000 1st Qu.: 15.5048 1st Qu.:1936
Median : 7.000 Median :0.0000 Median : 22.9995 Median :2080
Mean : 9.251 Mean :0.4646 Mean : 29.2315 Mean :2182
3rd Qu.:13.000 3rd Qu.:1.0000 3rd Qu.: 35.0235 3rd Qu.:2428
Max. :51.000 Max. :1.0000 Max. :628.9308 Max. :5824
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Data Example (Distribution of earn and ln earn)
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Statistical Model

Statistical Model — A stylized description of the population and your sample {𝑌𝑖}𝑛
𝑖=1

E.g. 𝑌𝑖
𝑖𝑖𝑑∼ Normal(𝜇, 𝜎2) where

𝑌𝑖 is earnings for individual 𝑖
“iid” stands for independently and identically distributed (another interpretation of
“random sample”)

Not a good model!
Better for log(earn) than earn, but let’s stick with earn for the moment
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Statistical Model
It turns out we don’t need to specify distribution fully
We can assume

𝑌𝑖 iid such that 𝐸(𝑌𝑖) = 𝜇 and Var(𝑌𝑖) = 𝜎2 < ∞ for all 𝑖 = 1, … , 𝑛 .

Very general model! Assumes only that:
sample is a random sample
population is well-represented by some distribution with a mean and a variance
(there are some distributions without finite mean / variance)

Suppose we want to estimate 𝜇 (population mean) and 𝜎2 (population variance)
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Statistical Estimators

Since 𝜇 is 𝐸(𝑌 ) and 𝜎2 is Var(𝑌 ) = 𝐸((𝑌 − 𝐸(𝑌 ))2) = 𝐸(𝑌 2) − 𝐸(𝑌 )2, suppose
we decide

̂𝜇 = 𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖 “Sample Mean”

𝜎2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 2
𝑖 − 𝑌 2 (we’ll give this a name soon…)

Is this a good idea?
We need to define what “good” means…
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Bias

One commonly used criterion is unbiasedness: 𝐸( ̂𝜃) = 𝜃
Sample mean is unbiased for true mean (under our stated conditions):

Proof: 𝐸(𝑌 ) = 𝐸 ( 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖) = 1
𝑛

𝑛
∑
𝑖=1

𝐸 (𝑌𝑖) = 1
𝑛𝑛𝜇 = 𝜇

You will not systematically over- or under-estimate the population mean.
(Thought experiment) If, say, 200 people went to the population and each
obtained a random sample of 𝑛 individuals and calculated the sample mean. Each
would obtain a different sample mean, but their sample means will be nicely
centered around the true (unknown) population mean.
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Bias
Unfortunately, 𝜎2 is a (downward) biased estimator of 𝜎2

Proof:

Since Var(𝑌𝑖) = 𝐸(𝑌 2
𝑖 ) − 𝐸(𝑌𝑖)2, we have 𝐸(𝑌 2

𝑖 ) = 𝜎2 + 𝜇2

Since Var(𝑌 ) = 𝐸(𝑌 2) − 𝐸(𝑌 )2, and 𝑌 is unbiased, we have 𝐸(𝑌 2) = Var(𝑌 ) + 𝜇2

Furthermore, we have Var(𝑌 ) = 𝜎2

𝑛 :

Var(𝑌 ) = Var ( 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖) = 1
𝑛

𝑛
∑
𝑖=1

Var(𝑌𝑖) = 1
𝑛2

𝑛
∑
𝑖=1

𝜎2 = 1
𝑛2 𝑛𝜎2 = 𝜎2

𝑛
Therefore

𝐸 (𝜎2) = 1
𝑛

𝑛
∑
𝑖=1

𝐸(𝑌 2
𝑖 ) − 𝐸(𝑌 2) = 𝜎2 + 𝜇2 − 𝜎2

𝑛 − 𝜇2 = 𝑛 − 1
𝑛 𝜎2
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Bias
Fortunately, in this case, there is an obvious unbiased estimator:

𝜎2 = 𝑛
𝑛 − 1𝜎2 = 1

𝑛 − 1
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 (sample variance)

We call 𝜎2 the biased sample variance
(Why divide by 𝑛 − 1?)

Only 𝑛 − 1 independent pieces of information in {𝑌𝑖 − 𝑌 } since ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 ) = 0

Given {𝑌1 − 𝑌 , … , 𝑌𝑖−1 − 𝑌 , 𝑌𝑖+1 − 𝑌 , … , , 𝑌𝑛 − 𝑌 }, you can calculate 𝑌𝑖 − 𝑌
you used one “degree-of-freedom” when you used the data to calculate 𝑌
If 𝑌 was obtained from a different sample, then you should divide by 𝑛, not 𝑛 − 1, to
get an unbiased estimator for 𝜎2
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Estimator Standard Error

We should also try to get some idea of the size of estimation error:

We have already shown Var(𝑌 ) = 𝜎2

𝑛

Can replace 𝜎2 with its estimate: ̂Var(𝑌 ) = 𝜎2

𝑛

Standard error of sample mean: s.e.(𝑌 ) = √𝜎2

𝑛
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Estimator Standard Error

What is the “standard error for 𝜎2”?
Not conventionally computed as part of analysis

Focus usually on the mean
sample variance usually computed in order to compute standard error of the sample
mean
Nonetheless, a valid question

all estimates come with estimation error

good exercise!
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Estimator Standard Error
Approach 1 (not a good one in this circumstance):

If we assume 𝑌𝑖
𝑖𝑖𝑑∼ Normal(𝜇, 𝜎2), then it can be shown that

(𝑛 − 1)𝜎2

𝜎2 ∼ 𝜒2(𝑛 − 1) which has a variance of 2(𝑛 − 1)
Then

Var (𝜎2) = 𝜎4

(𝑛 − 1)2 2(𝑛 − 1) = 2𝜎4

𝑛 − 1 .

We can replace 𝜎2 with 𝜎2 to get

𝑠.𝑒.(𝜎2) =
√√√
⎷

2 (𝜎2)
2

𝑛 − 1
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Estimator Standard Error
For our data, we have
y <- dat$earn; N <- length(y)
muhat <- mean(y); s2hat <- var(y)
muhatse <- sqrt(s2hat/N); s2hatse <- sqrt(2*s2hat^2/(N-1))
cat("sample mean:", round(muhat,3), " s.e.:", round(muhatse,3), "\n")
cat("sample variance:", round(s2hat,3),

" s.e.:", round(s2hatse,3), "(don't trust this s.e.)\n")

sample mean: 29.232 s.e.: 0.368
sample variance: 670.651 s.e.: 13.487 (don't trust this s.e.)

The s.e. of the sample variance obtained here should not be trusted, since it is based on
a formula derived assuming the data is Normally distributed, but our data is far from
Normally distributed
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Estimator Standard Error

Approach 2: hunker down and derive a formula for the variance of the sample variance
without assuming Normality. There is a formula (we’ll omit the proof :))

Var(𝜎2) = 1
𝑛 (𝜇4 − 𝑛 − 3

𝑛 − 1𝜎4) where 𝜇4 = 𝐸((𝑌 − 𝐸(𝑌 ))4)

𝜇4 can be estimated by 𝜇4 = (1/𝑛) ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )4

If 𝑌𝑖 is normally distributed, then 𝜇4 = 3𝜎4 and Var(𝜎2) reduces to 2𝜎4/(𝑛 − 1)
mu4 = (1/N)*sum((y-mean(y))^4)
VV <- (1/N)*(mu4 - (N-3)/(N-1)*s2hat^2)
cat("sample variance:", round(s2hat,3), " s.e. of sample variance:", round(sqrt(VV),3))

sample variance: 670.651 s.e. of sample variance: 95.358

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 27 / 60



Agenda A Little Bit of Math Statistics Review Course Admin Roadmap

Estimator Standard Error (The Bootstrap)
Approach 3: The Bootstrap

If 𝑅 people obtained indp. random samples from pop. and calculated 𝜇(𝑟) and 𝜎2
(𝑟)

We can estimate standard error as s.e.(𝜎2) = √ 1
𝑅 − 1

𝑅
∑
𝑟=1

(𝜎2
(𝑟)

− 𝜎2)2

Idea of the bootstrap: resample from {𝑌1, … , 𝑌𝑛} with replacement to get

{𝑌 (𝑏)
1 , … , 𝑌 (𝑏)

𝑛 } for 𝑏 = 1, … , 𝐵

Calculate for each bootstrap sample: 𝜎2
(𝑏)

and then calculate

bootstrap s.e.(𝜎2) =
√√√
⎷

1
𝐵 − 1

𝐵
∑
𝑟=1

(𝜎2
(𝑏)

− 𝜎2)2
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Estimator Standard Error (The Bootstrap)
Can do the same for s.e. of the mean and the median!
set.seed(456)
B <- 200 ## Bootstrap replication sample
bmeans <- bvars <- bmeds <- rep(NA, B) ## To store the bootstrapped vars, means, medians
for (b in 1:B){
ysmpb <- sample(y, 4946, replace=T) # Sample with replacement from orig. smp.
bmeans[b] <- mean(ysmpb) # can do the same for the mean!
bvars[b] <- var(ysmpb) # bootstrapped sample variances
bmeds[b] <- median(ysmpb) # can do the same for the medians!

}
cat("sample mean: ", round(muhat, 3), " s.e.:", round(muhatse,3),

" bootstrap s.e.:", round(sqrt(var(bmeans)),3),"\n")
cat("sample var.: ", round(s2hat, 3), " s.e.:", round(s2hatse,3),

" bootstrap s.e.:", round(sqrt(var(bvars)),3),"\n")
cat("sample median.: ", round(median(y), 3), " bootstrap s.e.:", round(sqrt(var(bmeds)),3),"\n")

sample mean: 29.232 s.e.: 0.368 bootstrap s.e.: 0.357
sample var.: 670.651 s.e.: 13.487 bootstrap s.e.: 100.867
sample median.: 23 bootstrap s.e.: 0.314
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Efficiency

Smaller estimator variance is better than larger estimator variance
Qn: Are there other unbiased estimators for 𝜇 with smaller variance?
(Partial answer, limiting ourselves to unbiased linear estimators)
Linear estimator for 𝜇: estimator of the form ̃𝜇 = ∑𝑛

𝑖=1 𝑤𝑖𝑌𝑖

Unbiased of ̃𝜇 requires ∑𝑛
𝑖=1 𝑤𝑖 = 1

𝐸( ̃𝜇) = 𝐸 (
𝑛

∑
𝑖=1

𝑤𝑖𝑌𝑖) =
𝑛

∑
𝑖=1

𝑤𝑖𝐸 (𝑌𝑖) = 𝜇
𝑛

∑
𝑖=1

𝑤𝑖 = 𝜇 if
𝑛

∑
𝑖=1

𝑤𝑖 = 1
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Efficiency
E.g.,

sample mean is a linear unbiased estimator: weights 𝑤𝑖 = 1/𝑛, 𝑖 = 1, … , 𝑛, sums
to one.

̃𝜇1 = 2
𝑛(𝑛 + 1)𝑌1 + ⋯ + 2𝑖

𝑛(𝑛 + 1)𝑌𝑖 + ⋯ + 2𝑛
𝑛(𝑛 + 1)𝑌𝑛 =

𝑛
∑
𝑖=1

2𝑖
𝑛(𝑛 + 1)𝑌𝑖

̃𝜇1 is a linear estimator for 𝜇, and unbiased since weights sum to one
𝑛

∑
𝑖=1

𝑤𝑖 =
𝑛

∑
𝑖=1

2𝑖
𝑛(𝑛 + 1) = 2

𝑛(𝑛 + 1)
𝑛

∑
𝑖=1

𝑖 = 2
𝑛(𝑛 + 1)

𝑛(𝑛 + 1)
2 = 1 .

̃𝜇2 = 𝑦𝑛 is a linear unbiased estimator
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Efficiency
Under assumed conditions, sample mean has smallest variance among all linear
unbiased estimators “Best Linear Unbiased”

Proof: Let ̃𝜇 =
𝑛

∑
𝑖=1

𝑤𝑖𝑌𝑖 where
𝑛

∑
𝑖=1

𝑤𝑖 = 1. Let 𝑤𝑖 = 1
𝑛 + 𝑣𝑖.

Since 𝑤𝑖 sum to one, 𝑣𝑖 sum to zero. Then

Var (𝜇) =
𝑛

∑
𝑖=1

( 1
𝑛 + 𝑣𝑖)

2
Var(𝑌𝑖) = 𝜎2

𝑛
∑
𝑖=1

( 1
𝑛2 + 2𝑣𝑖

𝑛 + 𝑣2
𝑖 )

= 𝜎2

𝑛 + 2𝜎2

𝑛
𝑛

∑
𝑖=1

𝑣𝑖 + 𝜎2
𝑛

∑
𝑖=1

𝑣2
𝑖 = 𝜎2

𝑛 + 𝜎2
𝑛

∑
𝑖=1

𝑣2
𝑖 ≥ Var(𝑌 ) .

Equality holds only if ∑𝑛
𝑖=1 𝑣2

𝑖 = 0, i.e., 𝑣𝑖 = 0 for all 𝑖 = 1, … , 𝑛, i.e., when 𝑤𝑖 = 1/𝑛
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MSE and the Bias-Variance Tradeoff
Choosing BLU estimators places priority on unbiasedness
Alternative measure of quality of estimator — Mean Square Estimator Error

𝑀𝑆𝐸( ̂𝜃) = 𝐸(( ̂𝜃 − 𝜃)2)
= Var( ̂𝜃 − 𝜃) + (𝐸( ̂𝜃 − 𝜃))2

= Var( ̂𝜃) + (𝐸( ̂𝜃) − 𝜃)2

= Estimator Variance + (Estimator Bias)2

Choosing estimator to minimize MSE allows for bias-variance trade-off

Can show that if 𝑌𝑖
𝑖𝑖𝑑∼ Normal(𝜇, 𝜎2), then 𝑀𝑆𝐸(𝜎2) < 𝑀𝑆𝐸(𝜎2) (exercise)
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Consistency

𝐸(𝑌 ) = 𝜇 and Var(𝑌 ) = 𝜎2

𝑛 → 0 as 𝑛 → ∞

As 𝑛 → ∞, sample mean “converges” to 𝜇
Convergence in Probability A sequence of random variables 𝑋𝑛, 𝑛 = 1, 2, …,
converges in probability to 𝑐 if for any 𝜖 > 0, we have

lim
𝑛→∞

Pr ( |𝑋𝑛 − 𝑐| ≥ 𝜖 ) = 0 .

We say 𝑋𝑛
𝑝

→ 𝑐
An estimator is consistent if it converges in probability to what it is estimating
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Consistency
Under our stated assumptions, the sample mean is consistent for the population mean
Khinchine’s Weak Law of Large Numbers (WLLN) If {𝑌𝑖}𝑛

𝑖=1 is iid with
𝐸(𝑌𝑖) = 𝜇 < ∞ for all 𝑖, then

𝑌 𝑛
𝑝

⟶ 𝜇
where 𝑌 𝑛 is the sample mean based on 𝑛 observations.

There are many “Laws of Large Numbers” each stating different conditions under
which the sample mean is consistent
“Weak” refers to the kind of probabilistic convergence used here (there are others)
Bias and variance going to zero is actually “convergence in mean square”, but this
implies convergence in probability
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Consistency (Simulation Example)
Suppose 200 people each took independent random samples of size 𝑛 from population
Suppose population is well-represented by Chi-Sq(1) distribution (mean = 1)
Plot distribution of sample mean for 𝑛 = 20, 50, 100, 500, 1000, 2000
set.seed(1701)
Persons <- 200
MaxSampleSize <- 2000
AllSamples <- rchisq(Persons*MaxSampleSize, df=1) %>% matrix(ncol=Persons)
smplsizes <- c(20, 50, 100, 500, 1000, 2000)
plots1 <- vector("list", length=6)
for (i in 1:length(smplsizes)){
n <- smplsizes[i]
means <- colMeans(AllSamples[1:n,])
datmeans <- data.frame(smplmeans=means)
plots1[[i]] <- ggplot(data=datmeans, aes(x=smplmeans)) +

geom_histogram(aes(y=..density..), color="black", fill="lightblue", binwidth=0.05) +
labs(title = paste("sample size", smplsizes[i])) + xlim(0,3) +
theme_bw() + theme(plot.title = element_text(size=20))

} Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 36 / 60



Agenda A Little Bit of Math Statistics Review Course Admin Roadmap

Consistency (Simulation Example)
(plots1[[1]] | plots1[[2]] | plots1[[3]]) / (plots1[[4]] | plots1[[5]] | plots1[[6]])

0.0

0.5

1.0

1.5

0 1 2 3
smplmeans

de
ns

ity

sample size 20

0

1

2

0 1 2 3
smplmeans

de
ns

ity

sample size 50

0

1

2

3

0 1 2 3
smplmeans

de
ns

ity

sample size 100

0

2

4

6

0 1 2 3
smplmeans

de
ns

ity

sample size 500

0.0

2.5

5.0

7.5

0 1 2 3
smplmeans

de
ns

ity

sample size 1000

0.0

2.5

5.0

7.5

10.0

12.5

0 1 2 3
smplmeans

de
ns

ity

sample size 2000

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 37 / 60



Agenda A Little Bit of Math Statistics Review Course Admin Roadmap

Consistency

Also, we say that 𝑋𝑛
𝑝

→ 𝑌𝑛 if 𝑋𝑛 − 𝑌𝑛
𝑝

→ 0

An important property of convergence in probability: if 𝑔(.) is continuous, and 𝑋𝑛
𝑝

→ 𝑐,
then 𝑔(𝑋𝑛) → 𝑔(𝑐)

Suppose we want to estimate 𝜇2. A consistent estimator is ̂𝜇2 = 𝑌 2

𝑌
𝑝

⟶ 𝜇 ⇒ 𝑌 2 𝑝
⟶ 𝜇2
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Consistency

Note that 𝑌 2 is not an unbiased estimator of 𝜇2, since

Var(𝑌 ) = 𝐸(𝑌 2) − 𝐸(𝑌 )2 = 𝐸(𝑌 2) − 𝜇2 ⇒ 𝐸(𝑌 2) = 𝜇2 + Var(𝑌 ) > 𝜇2

Jensen’s Inequality:
If 𝑔(.) is convex, then 𝐸(𝑔(𝑋)) ≥ 𝑔(𝐸(𝑋))
If 𝑔(.) is concave, then 𝐸(𝑔(𝑋)) ≤ 𝑔(𝐸(𝑋))
Equality holds if 𝑔(.) is linear

e.g. 𝑔(𝑥) = 𝑥2 is strictly convex
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Consistency
𝜎2 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 2
𝑖 − 𝑌 2 is consistent for 𝜎2

Proof:

𝑌𝑖 iid with 𝐸(𝑌𝑖) = 𝜇 and Var(𝑌𝑖) = 𝜎2 ⇒ 𝑌 2
𝑖 iid with 𝐸(𝑌 2

𝑖 ) = 𝜎2 + 𝜇2

1
𝑛

𝑛
∑
𝑖=1

𝑌 2
𝑖

𝑝
→ 𝜎2 + 𝜇2 and 𝑌 2 𝑝

⟶ 𝜇2

Therefore 𝜎2 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 2
𝑖 − 𝑌 2 𝑝

⟶ 𝜎2 + 𝜇2 − 𝜇2 = 𝜎2

𝜎2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 is also consistent for 𝜎2 since 𝜎2 = 𝑛
𝑛 − 1⏟

→1 as 𝑛→∞

𝜎2
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Hypothesis Testing (Two-Sided)

Suppose we want to test

𝐻0 ∶ 𝜇 = 𝜇0 vs 𝐻𝐴 ∶ 𝜇 ≠ 𝜇0

Intuitive Idea:
If 𝜇 = 𝜇0 we expect ̂𝜇 to be “near” 𝜇0

If ̂𝜇 is far from 𝜇0, perhaps 𝐻0 ∶ 𝜇 = 𝜇0 is incorrect
If ̂𝜇 is “too far” from 𝜇0, take this as statistical evidence that 𝜇 ≠ 𝜇0

But how far is too far?
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Hypothesis Testing (Two-Sided)
Assume for the moment that 𝑌𝑖

𝑖𝑖𝑑∼ Normal(𝜇0, 𝜎2), 𝑖 = 1, … , 𝑛
We have

𝑌𝑖
𝑖𝑖𝑑∼ Normal(𝜇0, 𝜎2) ⟹ 𝑌 ∼ Normal (𝜇0, 𝜎2

𝑛 )

⟹ (𝑌 − 𝜇0)
√𝜎2/𝑛

∼ Normal(0, 1)

⟹ (𝑌 − 𝜇0)
√𝜎2/𝑛⏟⏟⏟⏟⏟
t-statistic

∼ 𝑡(𝑛 − 1)
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Hypothesis Testing (Two-Sided)

cα− cα 0

α 2α 2

Reject 𝐻0 if 𝑡 > 𝑐𝛼 or 𝑡 < −𝑐𝛼, where 𝑐𝛼 is such that 𝛼 = 0.01, 0.05, 0.10
i.e., reject if Pr(|𝑡| > 𝑐𝛼) < 𝛼 given 𝜇 = 𝜇0 (Prob of rejecting correct null)
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Hypothesis Testing (Two-Sided)
NVal <- c(20, 50, 100, 200, 400)
alphaVal <- c(0.01, 0.05, 0.1)
Critval <- matrix(rep(0,length(NVal)*length(alphaVal)), ncol = length(NVal))
colnames(Critval) <- paste0("N=",NVal)
rownames(Critval) <- paste0("alpha=",alphaVal)
for (i in 1:length(alphaVal)){
for (j in 1:length(NVal)){
Critval[i, j] = qt(1-alphaVal[i]/2, df=NVal[j]-1)

}
}
round(Critval,3)

N=20 N=50 N=100 N=200 N=400
alpha=0.01 2.861 2.680 2.626 2.601 2.588
alpha=0.05 2.093 2.010 1.984 1.972 1.966
alpha=0.1 1.729 1.677 1.660 1.653 1.649
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Hypothesis Testing (Two-Sided)

|t|−|t| 0

p/2p/2

Equivalently, reject 𝐻0 ∶ 𝜇 = 𝜇0 if “p-value” Pr(|𝑡| > 𝑐𝛼) is less than 𝛼

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 45 / 60



Agenda A Little Bit of Math Statistics Review Course Admin Roadmap

Asymptotic Normality
When 𝑁 → ∞, the t-distribution converges to the Normal(0,1)
Then critical values 𝑐0.01, 𝑐0.05 and 𝑐0.10 are 2.576, 1.96 and 1.645 respectively

What if 𝑌𝑖 is not Normally distributed? Then t-statistic does not have t
distribution.

However, we have the following result
Lindeberg-Levy Central Limit Theorem: If {𝑌𝑖}𝑛

𝑖=1 are iid with 𝐸(𝑌𝑖) = 𝜇 and
Var(𝑌𝑖) = 𝜎2 < ∞ for all 𝑖, then

√
𝑁(𝑌 − 𝜇) 𝑑→ Normal(0, 𝜎2)
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Asymptotic Normality (Simulation Example)
Continuation of Simulation Example (200 people drawing independent samples from
population)
𝑛 = 5, 10, 50, 100, 500, 1000
Plot distribution of

√𝑛(𝑌 𝑛 − 𝜇) (here 𝜇 = 1)
plots2 <- vector("list", length=6)
smplsizes <- c(5, 10, 50, 100, 500, 1000)
for (i in 1:length(smplsizes)){
n <- smplsizes[i]
means <- colMeans(AllSamples[1:n,])
datmeans <- data.frame(scaledmeans=sqrt(n)*(means-1))
plots2[[i]] <- ggplot(data=datmeans, aes(x=scaledmeans)) +

geom_histogram(aes(y=..density..), color="black", fill="lightblue", binwidth=0.2) +
stat_function(fun=dnorm, args = with(dat, c(mean=0, sd=sqrt(2))), color="blue", size=1) +
xlim(-4, 4) + ylim(0, 0.5) + labs(title = paste("sample size", smplsizes[i])) +
theme_bw() + theme(plot.title = element_text(size=20))

}
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Asymptotic Normality (Simulation Example)
(plots2[[1]] | plots2[[2]] | plots2[[3]]) / (plots2[[4]] | plots2[[5]] | plots2[[6]])
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Hypothesis Testing (Two-Sided)

“
𝑑→” means convergence in distribution

when 𝑛 is large, pdf of LHS is approximately the pdf of the Standard Normal
Can also be shown that

√𝑛(𝑌 − 𝜇)
√𝜎2

= 𝑌 − 𝜇
√𝜎2/𝑛

𝑑⟶ Normal(0, 1)

You can replace 𝜎2 with 𝜎2 or any other consistent estimator of 𝜎2

When 𝑛 is large, can make the approximation 𝑡 𝑎∼ Normal(0, 1), where 𝑎∼ means
“approximately distributed”, even when 𝑌𝑖 is not Normally distributed
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Hypothesis Testing (Two-Sided) Example

For our data
𝐻0 ∶ 𝜇 = 30 vs 𝐻𝐴 ∶ 𝜇 ≠ 30
y <- dat$earn; N<- length(y); muhat <- mean(y); s2hat <- var(y)
t <- (muhat - 30)/sqrt(s2hat/N)
pval_t <- 2*pt(abs(t), df=N-1, lower.tail = FALSE)
pval_n <- 2*pnorm(abs(t), lower.tail = FALSE)
cat("t-stat:", t)
cat("\n p-value (t-dist):", pval_t)
cat("\n p-value (Standard Normal):", pval_n)

t-stat: -2.086885
p-value (t-dist): 0.0369496
p-value (Standard Normal): 0.03689851
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Hypothesis Testing (One-Sided)
𝐻0 ∶ 𝜇 < 𝜇0 vs 𝐻𝐴 ∶ 𝜇 ≥ 𝜇0

cα0

α

Reject 𝜇0 if t-statistic is greater then 𝑐𝛼 where 𝑐𝛼 is that value such that
Pr(𝑡 > 𝑐𝛼) = 𝛼 under the null, 𝛼 = 0.01, 0.05, 0.10.
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Estimation Again

Should we have worked with log(earn) instead of earn?
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Estimation Again

To help us think about this, let’s assume

ln 𝑌𝑖
𝑖𝑖𝑑∼ Normal(𝜇, 𝜎2) for all 𝑖

where 𝑌𝑖 is earnings of individual 𝑖 (seems reasonable!)

Then 𝑌𝑖
𝑖𝑖𝑑∼ Log-normal(𝜇, 𝜎2) for all 𝑖

𝐸(𝑌𝑖) = 𝑒𝜇+ 1
2 𝜎2 = 𝑒𝜇𝑒1

2 𝜎2

Var(𝑌𝑖) = 𝑒2𝜇+𝜎2(𝑒𝜎2 − 1)
Median(𝑌𝑖) = 𝑒𝜇
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Estimation Again
Can estimate 𝜇 = 𝐸(ln 𝑌 ) and 𝜎2 = Var(ln 𝑌 ) in the usual way

̂𝜇 = 1
𝑛

𝑛
∑
𝑖=1

ln 𝑌𝑖 and 𝜎2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(ln 𝑌𝑖 − ̂𝜇)2

But we are interested in mean and variance of 𝑌 , not ln 𝑌 — must convert back!

estimate of mean hourly earnings: 𝑒𝜇𝑒1
2 𝜎2 (Not 𝑒𝜇)

estimate of median hourly earnings: 𝑒𝜇

estimate of variance of hourly earnings: 𝑒2𝜇+𝜎2(𝑒𝜎2 − 1)
Also need to compute s.e. (use bootstrap?)
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Estimation Again
y <- log(dat$earn)
n2ln_mu <- function(m, v){exp(m+0.5*v)}
n2ln_vr <- function(m, v){exp(2*m + v)*(exp(v) - 1)}
n2ln_md <- function(m, v){exp(m)}
m <- mean(y)
v <- var(y)
earnmean <- n2ln_mu(m,v)
earnvar <- n2ln_vr(m,v)
earnmed <- n2ln_md(m,v)
set.seed(456)
B <- 200 ## Bootstrap replication sample
bvars <- bmeans <- bmeds <- rep(NA, B) ## To store the bootstrapped statistics
for (b in 1:B){
ysmpb <- sample(y, 4946, replace=T) # Sample with replacement from orig. smp.
m1 <- mean(ysmpb) # mean of bootstrap sample of ln(earn)
v1 <- var(ysmpb) # variance of boostrap sample of ln(earn)
bmeans[b] <- n2ln_mu(m1,v1) # convert to mean of earn, and store
bvars[b] <- n2ln_vr(m1,v1) # convert to variance of earn, and store
bmeds[b] <- n2ln_md(m1,v1) # convert to median of earn, and store

}
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Estimation Again

cat("mean hr. earn.: ", round(earnmean, 3),
" s.e.:", round(sqrt(var(bmeans)),3), "\n")

cat("var. hr. earn.: ", round(earnvar, 3),
" s.e.:", round(sqrt(var(bvars)), 3), "\n")

cat("median hr. earn.: ", round(earnmed, 3),
" s.e.:", round(sqrt(var(bmeds)),3),"\n")

mean hr. earn.: 28.907 s.e.: 0.305
var. hr. earn.: 443.902 s.e.: 20.8
median hr. earn.: 23.361 s.e.: 0.215
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Session 1.3

Session 1.3 Course Arrangements

Course Arrangements
Webpages, reading material, software

Grading system
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Course Arrangements

Course webpage vs course eLearn page
Course Notes
Software: R

Not covered in class (learn by playing with code supplied)

Needed for Assignment

NOT EXAMINABLE (no stress!)
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Course Arrangements (Evaluation)

Individual Assignments 50%
Short Weekly Review Questions (20%), graded based on submission, feedback via
detailed answer sheet
Three longer assignments (30%), graded in detail.

Exam 40%
Closed book, calculators allowed, no cheat sheet

Class and Forum Participation 10%
ask/answer questions in class
ask/answer questions on forum page
post typos and errors on forum page
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Roadmap

This Session 1: Statistics Review
Next Session 2: Simple Linear Regression
Session 3: Estimator Standard Errors; Multiple Linear Regression
Session 4: Matrix Algebra
Session 5: OLS using Matrix Algebra
Session 6: Hypothesis Testing
Session 7: Prediction
Session 8: Instrumental Variable Regression
Session 9: Logistic and Other Regressions
Session 10: Panel Data Regressions
Session 11: Introduction to Time Series
Session 12: Time Series Regressions
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