ECON207 Session 1

Math/Stats Review

Anthony Tay

Corrected Version: 20 Aug 2024

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 1/60

Agenda A Little Bit of Math Statistics Review Course Admin Octobro Oct

ECON207 Course Objectives

- Second course in UG econometrics
- Go deeper into theoretical foundations of OLS estimation of linear regression model
 - when it works well
 - when it doesn't work so well (or not at all)
 - how to use the models
 - using language of matrix algebra (needed for further work)
- Introduction to more advanced topics
 - instrumental variables
 - time series regressions
 - panel data
 - limited dependent variable models

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 2 / 60

- A Bit of Math
 - Summation notation, probability prerequisites
 - We will cover more math throughout the course, as needed
- Statistics Review
 - Estimation
 - Hypothesis testing
- Course Administrative Arrangements
 - Course webpage vs Course eLearn page, Grading, Assignments

ECON207 Session 1 Corrected Version: 20 Aug 2024 3 / 60

Session 1.1 Math Review

- Summation Notation
- Probability Prerequisites

ECON207 Session 1 Corrected Version: 20 Aug 2024 4/60 Anthony Tay

Agenda

A Little Bit of Mat

Course Admir

Roadmaj

Summation Notation

Given a set of numbers $\{x_i\}_{i=1}^n=\{x_1,x_2,\ldots,x_n\}$, define

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$

Two Rules:

- $\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$
- $\bullet \ \sum_{i=1}^n ca_i = c \sum_{i=1}^n a_i \ \ \mbox{where} \ c \ \mbox{ is some constant value}$

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

5 / 60

Agenda A Little Bit of Math

000

Roadma

Summation Notation

Two Results: For any set of numbers $\{x_i,y_i\}_{i=1}^n$ we have

• Sum of deviations from sample mean is zero

$$\sum_{i=1}^n (x_i - \overline{x}) = \sum_{i=1}^n x_i - \sum_{i=1}^n \overline{x} = n\overline{x} - n\overline{x} = 0 \,, \quad \text{where} \quad \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

 $x \leftarrow c(1, 4, 2, pi, exp(1), 100000)$ # insert whatever numbers you want sum(x - mean(x))

[1] -3.637979e-12

Anthony Tax

ECON207 Session 1

Corrected Version: 20 Aug 2024

Summation Notation

Sum of product of deviation from sample means (alternative expressions)

$$\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^n (x_i - \overline{x})y_i = \sum_{i=1}^n x_i(y_i - \overline{y}) = \sum_{i=1}^n x_iy_i - n\overline{x}\,\overline{y}$$

```
x \leftarrow c(1, 4, 2, pi, exp(1), 1000)
                                             # insert whatever numbers you want
y \leftarrow c(5, 3029, 2911, sin(4.32), 1.43, 403) # insert whatever numbers you want
c(sum((x - mean(x))*(y-mean(y))), sum((x-mean(x))*y), sum(x*(y-mean(y))),
  sum(x*y) - length(x)*mean(x)*mean(y))
```

[1] -650747.2 -650747.2 -650747.2 -650747.2

ECON207 Session 1

Corrected Version: 20 Aug 2024 7 / 60

Summation Notation

Proof of first equality

$$\begin{split} \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) &= \sum_{i=1}^n (x_i - \overline{x})y_i - \sum_{i=1}^n (x_i - \overline{x})\overline{y} \\ &= \sum_{i=1}^n (x_i - \overline{x})y_i - \overline{y}\underbrace{\sum_{i=1}^n (x_i - \overline{x})}_{=0} \\ &= \sum_{i=1}^n (x_i - \overline{x})y_i \end{split}$$

ECON207 Session 1

Corrected Version: 20 Aug 2024

Agenda A Li

tatistics Review

Course Admin

Roadmap

Some Probability Prerequisites

Random variable, probability distribution function, mean (expected value) and variance, median

If X, Y are random variables, and a, b are constants

- $Var(X) = E((X E(X))^2) = E(X^2) E(X)^2$
- Cov(X,Y) = E((X E(X))(Y E(Y))) = E(XY) E(X)E(Y)
- E(aX + b) = aE(X) + b
- $Var(aX + b) = a^2 Var(X)$
- $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2ab Cov(X, Y)$

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

0 / 60

Agenda A Little Bit of IVI

000

Roadma

Some Probability Prerequisites

- ullet X and Y independent: $f_{X,Y}(x,y) = f_X(x) f_Y(y)$
- ullet X and Y independent $\Rightarrow Cov(X,Y)=0$ but opposite implication need not hold
- Some distributions:
 - Normal (Gaussian) "Normal (μ,σ^2) "
 - Chi-sq " $\chi^2(v)$ "
 - Student-t "t(v)"
 - $\bullet \ \, \mathsf{Snedecor's} \ \mathsf{F} \ ``F(u,v)" \\$

If X and Y are Normal variables, then aX + bY is Normal

More concepts/results to come...

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

Agenda A Little Bit of Math Course Admin

Session 1.2

Session 1.2 Statistics Review

- Population vs Model vs Sample
- Evaluating Estimators
 - Unbiased Estimators
 - Efficiency
 - Consistency
- Estimator Standard Errors
- Hypothesis Testing

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 11 / 60

Statistics Review

Statistics: Learning about a certain population using information from a (possibly small) sample from that population

e.g. Population of interest: Non-institutional employed civilians aged 16 and above in US in 2018

Population Characteristics of Interest:

- "Representative" Hourly Earnings
- Variation in Hourly Earnings across Population
- Relationship between Hourly Earnings and Years of Schooling (Next week)

Random sample of n individuals from this population

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 12 / 60

Random Sample

Random Sample

- Every individual in population has equal chance of getting selected (so sample "looks like" the population)
- One individual sampled does not make another more or less likely to be sampled

Data in earnings2019.csv

- Collected by U. Michigan's Institute for Social Research as part of their 2019 wave of their Panel Study of Income Dynamics
- N = 4946 individuals after filtering for employment (defined as ≥ 1000 hrs worked in 2018)

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 13/60

Data Example

10

12

63

74

4

2

3

3

2

3

43

28

```
library(tidyverse)
library(patchwork)
library(latex2exp)
dat <- read_csv("data\\earnings2019.csv", show_col_types=FALSE)</pre>
head(dat,3)
# A tibble: 3 x 11
    age height educ feduc meduc tenure wexp race
                                                       male
                                                             earn totalwork
         <dbl> <dbl> <dbl> <dbl> <
                                   <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                                        <dbl>
1
     59
            67
                   12
                          3
                                3
                                        5
                                             30 White
                                                           0 36.3
                                                                         1652
```

7

6

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 14/60

13 White

9 White

1 6.46

1 13.1

1548

2460

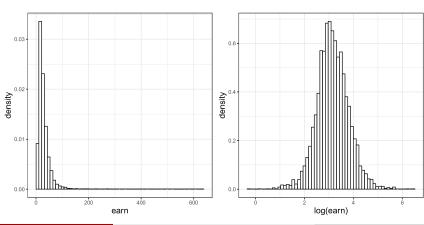
Agenda A Little Bit of Math Statistics Review Course Admin Roadmap

Data Example (Summary of Selected Variables)

dat %>% select(-c(race, feduc, meduc)) %>% summary(dat)

age	height	educ	tenure	
Min. :19.00	Min. :40.00	Min. : 7.00 Min	. : 1.000	
1st Qu.:33.00	1st Qu.:64.00	1st Qu.:12.00 1st	Qu.: 3.000	
Median :40.00	Median :67.00	Median:14.00 Med	ian : 6.000	
Mean :41.99	Mean :67.45	Mean :14.31 Mea	n : 9.177	
3rd Qu.:51.00	3rd Qu.:70.00	3rd Qu.:16.00 3rd	Qu.:13.000	
Max. :82.00	Max. :83.00	Max. :17.00 Max	:54.000	
wexp	male	earn	totalwork	
Min. : 1.000	Min. :0.0000	Min. : 0.7428	Min. :1000	
1st Qu.: 3.000	1st Qu.:0.0000	1st Qu.: 15.5048	1st Qu.:1936	
Median : 7.000	Median :0.0000	Median : 22.9995	Median :2080	
Mean : 9.251	Mean :0.4646	Mean : 29.2315	Mean :2182	
3rd Qu.:13.000	3rd Qu.:1.0000	3rd Qu.: 35.0235	3rd Qu.:2428	
Max. :51.000	Max. :1.0000	Max. :628.9308	Max. :5824	
Anthony Tay		ECON207 Session 1	Corrected Version: 20 Aug 2024	15 / 60

Data Example (Distribution of earn and In earn)



Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 16/0

Agenda A Little Bit of Math

Course Admin

Roadmap

Statistical Model

Statistical Model — A stylized description of the population and your sample $\{Y_i\}_{i=1}^n$

E.g. $Y_i \overset{iid}{\sim} \mathsf{Normal}(\mu, \sigma^2)$ where

- ullet Y_i is earnings for individual i
- "iid" stands for independently and identically distributed (another interpretation of "random sample")

Not a good model!

Better for log(earn) than earn, but let's stick with earn for the moment

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 17/60

Agenda A Little Bit of Math

Course Admin

Roadma

Statistical Model

It turns out we don't need to specify distribution fully

We can assume

 $Y_i \ \ \text{iid such that} \ \ E(Y_i) = \mu \ \ \text{and} \ \ \ Var(Y_i) = \sigma^2 < \infty \ \ \text{for all} \ i = 1, \dots, n \, .$

Very general model! Assumes only that:

- sample is a random sample
- population is well-represented by some distribution with a mean and a variance (there are some distributions without finite mean / variance)

Suppose we want to estimate μ (population mean) and σ^2 (population variance)

thony Tay ECON207 Session 1

Statistical Estimators

Since μ is E(Y) and σ^2 is $Var(Y)=E((Y-E(Y))^2)=E(Y^2)-E(Y)^2$, suppose we decide

$$\hat{\mu} = \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 "Sample Mean"

$$\bullet \ \ \widetilde{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})^2 = \frac{1}{n} \sum_{i=1}^n Y_i^2 - \overline{Y}^2 \ \text{(we'll give this a name soon...)}$$

Is this a good idea?

We need to define what "good" means...

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 19/60

Agenda A Little Bit of Math

OOO Admin

Roadma

Bias

One commonly used criterion is **unbiasedness**: $E(\hat{\theta}) = \theta$

Sample mean is unbiased for true mean (under our stated conditions):

Proof:
$$E(\overline{Y}) = E\left(\frac{1}{n}\sum_{i=1}^{n}Y_i\right) = \frac{1}{n}\sum_{i=1}^{n}E\left(Y_i\right) = \frac{1}{n}n\mu = \mu$$

- You will not systematically over- or under-estimate the population mean.
- (Thought experiment) If, say, 200 people went to the population and each obtained a random sample of n individuals and calculated the sample mean. Each would obtain a different sample mean, but their sample means will be nicely centered around the true (unknown) population mean.

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 20 / 6

Bias

Unfortunately, $\widetilde{\sigma}^2$ is a (downward) biased estimator of σ^2

- Since $Var(Y_i)=E(Y_i^2)-E(Y_i)^2$, we have $E(Y_i^2)=\sigma^2+\mu^2$ Since $Var(\overline{Y})=E(\overline{Y}^2)-E(\overline{Y})^2$, and \overline{Y} is unbiased, we have $E(\overline{Y}^2)=Var(\overline{Y})+\mu^2$ Furthermore, we have $\operatorname{Var}(\overline{Y}) = \frac{\sigma^2}{n}$:

$$\mathit{Var}(\overline{Y}) = \mathit{Var}\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mathit{Var}(Y_{i}) = \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2} = \frac{1}{n^{2}}n\sigma^{2} = \frac{\sigma^{2}}{n}$$

Therefore

$$E\left(\widetilde{\sigma^2}\right) = \frac{1}{n}\sum_{i=1}^n E(Y_i^2) - E(\overline{Y}^2) = \sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2 = \frac{n-1}{n}\sigma^2$$

Bias

Fortunately, in this case, there is an obvious unbiased estimator:

$$\widehat{\sigma^2} = \frac{n}{n-1} \widetilde{\sigma^2} = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2 \qquad \text{(sample variance)}$$

We call $\widetilde{\sigma^2}$ the biased sample variance

(Why divide by n-1?)

- Only n-1 independent pieces of information in $\{Y_i-\overline{Y}\}$ since $\sum_{i=1}^n(Y_i-\overline{Y})=0$ Given $\{Y_1-\overline{Y},\ldots,Y_{i-1}-\overline{Y},Y_{i+1}-\overline{Y},\ldots,Y_n-\overline{Y}\}$, you can calculate $Y_i-\overline{Y}$ you_used one "degree-of-freedom" when you used the data to calculate \overline{Y}

- ullet If \overline{Y} was obtained from a *different sample*, then you should divide by n, not n-1, to get an unbiased estimator for σ^2

Estimator Standard Error

We should also try to get some idea of the size of estimation error:

We have already shown
$$\operatorname{Var}(\overline{Y}) = \frac{\sigma^2}{n}$$

Can replace
$$\sigma^2$$
 with its estimate: $\widehat{Var(\overline{Y})} = \frac{\widehat{\sigma^2}}{n}$

Standard error of sample mean: s.e.
$$(\overline{Y}) = \sqrt{\frac{\widehat{\sigma^2}}{n}}$$

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

23 / 60

Agenda A Little Bit of Math

000

Roadmap

Estimator Standard Error

What is the "standard error for $\widehat{\sigma^2}$ "?

Not conventionally computed as part of analysis

- Focus usually on the mean
- sample variance usually computed in order to compute standard error of the sample mean
- Nonetheless, a valid question
 - all estimates come with estimation error
 - good exercise!

Anthony Ta

ECON207 Session 1

Corrected Version: 20 Aug 2024

Estimator Standard Error

Approach 1 (not a good one in this circumstance):

If we assume $Y_i \stackrel{iid}{\sim} \text{Normal}(\mu, \sigma^2)$, then it can be shown that

$$\frac{(n-1)\widehat{\sigma^2}}{\sigma^2} \sim \chi^2(n-1) \ \ \text{which has a variance of} \ \ 2(n-1)$$

Then

$$Var\left(\widehat{\sigma^2}\right) = \frac{\sigma^4}{(n-1)^2} 2(n-1) = \frac{2\sigma^4}{n-1}.$$

We can replace σ^2 with $\widehat{\sigma^2}$ to get

$$s.e.(\widehat{\sigma^2}) = \sqrt{\frac{2\left(\widehat{\sigma^2}\right)^2}{n-1}}$$

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

25 / 60

Agenda A Little Bit of Math

000

Roadmap

Estimator Standard Error

For our data, we have

```
sample mean: 29.232 s.e.: 0.368 sample variance: 670.651 s.e.: 13.487 (don't trust this s.e.)
```

The s.e. of the sample variance obtained here should not be trusted, since it is based on a formula derived assuming the data is Normally distributed, but our data is far from Normally distributed

Anthony Tax

ECON207 Session 1

Corrected Version: 20 Aug 2024

Estimator Standard Error

Approach 2: hunker down and derive a formula for the variance of the sample variance without assuming Normality. There is a formula (we'll omit the proof:))

$$Var(\widehat{\sigma^2}) = \frac{1}{n} \left(\mu_4 - \frac{n-3}{n-1} \sigma^4 \right) \quad \text{where} \quad \mu_4 = E((Y-E(Y))^4)$$

- μ_4 can be estimated by $\widehat{\mu_4} = (1/n) \sum_{i=1}^n (Y_i \overline{Y})^4$
- \bullet If Y_i is normally distributed, then $\mu_4=3\sigma^4$ and $\mathit{Var}(\widehat{\sigma^2})$ reduces to $2\sigma^4/(n-1)$

sample variance: 670.651

s.e. of sample variance: 95.358

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

07 / 60

Agenda A Little Bit of Math

000

Roadmap

Estimator Standard Error (The Bootstrap)

Approach 3: The Bootstrap

If R people obtained indp. random samples from pop. and calculated $\mu^{(r)}$ and $\widehat{\sigma^2}^{(r)}$

We can estimate standard error as s.e. $(\widehat{\sigma^2}) = \sqrt{\frac{1}{R-1}\sum_{r=1}^R(\widehat{\sigma^2}^{(r)}-\overline{\widehat{\sigma^2}})^2}$

ldea of the bootstrap: resample from $\{Y_1,\ldots,Y_n\}$ with replacement to get

$$\{Y_1^{(b)},\dots,Y_n^{(b)}\} \ \text{ for } \ b=1,\dots,B$$

Calculate for each bootstrap sample: $\widehat{\sigma^2}^{(b)}$ and then calculate

$$\text{bootstrap s.e.}(\widehat{\sigma^2}) = \sqrt{\frac{1}{B-1}\sum_{r=1}^B (\widehat{\sigma^2}^{(b)} - \overline{\widehat{\sigma^2}})^2}$$

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

Estimator Standard Error (The Bootstrap)

Can do the same for s.e. of the mean and the median!

```
set.seed(456)
B <- 200
                      ## Bootstrap replication sample
bmeans <- bwars <- bmeds <- rep(NA, B)
                                       ## To store the bootstrapped vars, means, medians
for (b in 1:B){
 ysmpb <- sample(y, 4946, replace=T) # Sample with replacement from orig. smp.
 {\tt bmeans[b] \leftarrow mean(ysmpb) \ \# \ can \ do \ the \ same \ for \ the \ mean!}
 bvars[b] <- var(ysmpb) # bootstrapped sample variances</pre>
 bmeds[b] <- median(ysmpb) # can do the same for the medians!</pre>
cat("sample mean: ", round(muhat, 3), " s.e.:", round(muhatse,3),
    bootstrap s.e.:", round(sqrt(var(bmeans)),3),"\n")
cat("sample var.: ", round(s2hat, 3), " s.e.:", round(s2hatse,3),
sample mean: 29.232 s.e.: 0.368 bootstrap s.e.: 0.357
sample var.: 670.651 s.e.: 13.487 bootstrap s.e.: 100.867
sample median.: 23 bootstrap s.e.: 0.314
```

ECON207 Session 1

Corrected Version: 20 Aug 2024

Efficiency

Smaller estimator variance is better than larger estimator variance

Qn: Are there other unbiased estimators for μ with smaller variance?

(Partial answer, limiting ourselves to unbiased *linear* estimators)

Linear estimator for μ : estimator of the form $\tilde{\mu} = \sum_{i=1}^n w_i Y_i$

Unbiased of $\tilde{\mu}$ requires $\sum_{i=1}^n w_i = 1$

$$E(\tilde{\mu}) = E\left(\sum_{i=1}^{n} w_{i} Y_{i}\right) = \sum_{i=1}^{n} w_{i} E\left(Y_{i}\right) = \mu \sum_{i=1}^{n} w_{i} = \mu \text{ if } \sum_{i=1}^{n} w_{i} = 1$$

ECON207 Session 1 Corrected Version: 20 Aug 2024

Efficiency

E.g.,

ullet sample mean is a linear unbiased estimator: weights $w_i=1/n$, $i=1,\dots,n$, sums

$$\bullet \ \ \tilde{\mu}_1 = \frac{2}{n(n+1)}Y_1 + \dots + \frac{2i}{n(n+1)}Y_i + \dots + \frac{2n}{n(n+1)}Y_n = \sum_{i=1}^n \frac{2i}{n(n+1)}Y_i$$

 $\tilde{\mu}_1$ is a linear estimator for μ , and unbiased since weights sum to one

$$\sum_{i=1}^n w_i = \sum_{i=1}^n \frac{2i}{n(n+1)} = \frac{2}{n(n+1)} \sum_{i=1}^n i = \frac{2}{n(n+1)} \frac{n(n+1)}{2} = 1 \,.$$

 $\bullet \ \tilde{\mu}_2 = y_n$ is a linear unbiased estimator

ECON207 Session 1

Corrected Version: 20 Aug 2024

Efficiency

Under assumed conditions, sample mean has smallest variance among all linear unbiased estimators "Best Linear Unbiased"

Proof: Let
$$\tilde{\mu} = \sum_{i=1}^n w_i Y_i$$
 where $\sum_{i=1}^n w_i = 1$. Let $w_i = \frac{1}{n} + v_i$.

Since \boldsymbol{w}_i sum to one, \boldsymbol{v}_i sum to zero. Then

$$\begin{split} \mathit{Var}(\widetilde{\mu}) \; &= \; \sum_{i=1}^n \left(\frac{1}{n} + v_i\right)^2 \, \mathit{Var}(Y_i) \; = \; \sigma^2 \sum_{i=1}^n \left(\frac{1}{n^2} + \frac{2v_i}{n} + v_i^2\right) \\ &= \; \frac{\sigma^2}{n} + \frac{2\sigma^2}{n} \sum_{i=1}^n v_i + \sigma^2 \sum_{i=1}^n v_i^2 \; = \; \frac{\sigma^2}{n} + \sigma^2 \sum_{i=1}^n v_i^2 \; \geq \; \mathit{Var}(\overline{Y}) \, . \end{split}$$

Equality holds only if $\sum_{i=1}^n v_i^2=0$, i.e., $v_i=0$ for all $i=1,\ldots,n$, i.e., when $w_i=1/n$

Agenda A Little B

Course Admin

Roadmap

MSE and the Bias-Variance Tradeoff

Choosing BLU estimators places priority on unbiasedness

Alternative measure of quality of estimator — Mean Square Estimator Error

$$\begin{split} MSE(\hat{\theta}) &= E((\hat{\theta} - \theta)^2) \\ &= Var(\hat{\theta} - \theta) + (E(\hat{\theta} - \theta))^2 \\ &= Var(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2 \\ &= \text{Estimator Variance} + \left(\text{Estimator Bias}\right)^2 \end{split}$$

Choosing estimator to minimize MSE allows for bias-variance trade-off

Can show that if $Y_i \overset{iid}{\sim} \operatorname{Normal}(\mu, \sigma^2)$, then $MSE(\widetilde{\sigma^2}) < MSE(\widehat{\sigma^2})$ (exercise)

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

33 / 60

Agenda A Little Bit of Math

000

Roadmap

Consistency

$$E(\overline{Y}) = \mu \text{ and } Var(\overline{Y}) = \frac{\sigma^2}{n} \to 0 \text{ as } n \to \infty$$

As $n \to \infty$, sample mean "converges" to μ

Convergence in Probability A sequence of random variables X_n , n=1,2,..., converges in probability to c if for any $\epsilon>0$, we have

$$\lim_{n\to\infty} \Pr\left(\left| X_n - c \right| \ge \epsilon \right) = 0.$$

We say $X_n \stackrel{p}{\to} c$

An estimator is **consistent** if it converges in probability to what it is estimating

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 34/60

Consistency

Under our stated assumptions, the sample mean is consistent for the population mean

Khinchine's Weak Law of Large Numbers (WLLN) If $\{Y_i\}_{i=1}^n$ is iid with $E(Y_i)=\mu<\infty$ for all i, then

$$\overline{Y}_n \stackrel{p}{\longrightarrow} \mu$$

where \overline{Y}_n is the sample mean based on n observations.

- There are many "Laws of Large Numbers" each stating different conditions under which the sample mean is consistent
- "Weak" refers to the kind of probabilistic convergence used here (there are others)
- Bias and variance going to zero is actually "convergence in mean square", but this implies convergence in probability

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 35/60

Consistency (Simulation Example)

Suppose 200 people each took independent random samples of size n from population Suppose population is well-represented by Chi-Sq(1) distribution (mean = 1)

Plot distribution of sample mean for n = 20, 50, 100, 500, 1000, 2000

```
set.seed(1701)
Persons <- 200
MaxSampleSize <- 2000
AllSamples <- rchisq(Persons*MaxSampleSize, df=1) %>% matrix(ncol=Persons)
smplsizes <- c(20, 50, 100, 500, 1000, 2000)
plots1 <- vector("list", length=6)</pre>
for (i in 1:length(smplsizes)){
 n <- smplsizes[i]</pre>
 means <- colMeans(AllSamples[1:n,])</pre>
 datmeans <- data.frame(smplmeans=means)</pre>
 plots1[[i]] <- ggplot(data=datmeans, aes(x=smplmeans)) +</pre>
    geom_histogram(aes(y=..density..), color="black", fill="lightblue", binwidth=0.05) +
    labs(title = paste("sample size", smplsizes[i])) + xlim(0,3) +
    theme_bw() + theme(plot.title = element_text(size=20))
                                                ECON207 Session 1
                                                                                Corrected Version: 20 Aug 2024
```

Agenda

A Little Bit of Ma

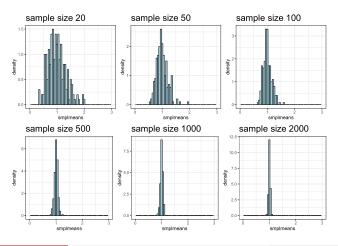
Statistics Review

Course Admir

Roadmap

Consistency (Simulation Example)

(plots1[[1]] | plots1[[2]] | plots1[[3]]) / (plots1[[4]] | plots1[[5]] | plots1[[6]])



Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

7 / 60

Agenda A Little Bit of Math

000

Roadmap

Consistency

Also, we say that $X_n \overset{p}{\to} Y_n$ if $X_n - Y_n \overset{p}{\to} 0$

An important property of convergence in probability: if g(.) is continuous, and $X_n \stackrel{p}{\to} c$, then $g(X_n) \to g(c)$

 \bullet Suppose we want to estimate $\mu^2.$ A consistent estimator is $\hat{\mu}^2=\overline{Y}^2$

$$\overline{Y} \xrightarrow{p} \mu \Rightarrow \overline{Y}^2 \xrightarrow{p} \mu^2$$

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

Agenda A Litt**l**e B

Consistency

Note that \overline{Y}^2 is **not** an unbiased estimator of μ^2 , since

$$\bullet \ \ Var(\overline{Y}) = E(\overline{Y}^2) - E(\overline{Y})^2 = E(\overline{Y}^2) - \mu^2 \ \ \Rightarrow \ \ E(\overline{Y}^2) = \mu^2 + Var(\overline{Y}) > \mu^2$$

Jensen's Inequality:

- $\bullet \ \ \text{If} \ g(.) \ \text{is convex, then} \ E(g(X)) \geq g(E(X)) \\$
- If g(.) is concave, then $E(g(X)) \le g(E(X))$
- Equality holds if g(.) is linear

e.g. $g(x) = x^2$ is strictly convex

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

80 / 60

Agenda A Little Bit of Math

000

Roadmap

Consistency

$$\widetilde{\sigma^2}=\frac{1}{n}\sum_{i=1}^n(Y_i-\overline{Y})^2=\frac{1}{n}\sum_{i=1}^nY_i^2-\overline{Y}^2$$
 is consistent for σ^2

Proof:

- $\bullet \ Y_i \ \text{iid with} \ E(Y_i) = \mu \ \text{and} \ \ Var(Y_i) = \sigma^2 \ \Rightarrow \ Y_i^2 \ \text{iid with} \ E(Y_i^2) = \sigma^2 + \mu^2$
- $\bullet \ \frac{1}{n} \sum_{i=1}^n Y_i^2 \stackrel{p}{\to} \sigma^2 + \mu^2 \ \text{and} \ \overline{Y}^2 \stackrel{p}{\longrightarrow} \mu^2$
- Therefore $\widetilde{\sigma^2}=\frac{1}{n}\sum\limits_{i=1}^nY_i^2-\overline{Y}^2\stackrel{p}{\longrightarrow}\sigma^2+\mu^2-\mu^2=\sigma^2$

$$\widehat{\sigma^2} = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2 \text{ is also consistent for } \sigma^2 \text{ since } \widehat{\sigma^2} = \underbrace{\frac{n}{n-1}}_{\text{or } n \to \infty} \widehat{\sigma^2}$$

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 203

Agenda A Little Bit of Ma

Course Admir

Roadmap

Hypothesis Testing (Two-Sided)

Suppose we want to test

$$H_0: \mu = \mu_0 \text{ vs } H_A: \mu \neq \mu_0$$

Intuitive Idea:

- If $\mu=\mu_0$ we expect $\hat{\mu}$ to be "near" μ_0
- If $\hat{\mu}$ is far from μ_0 , perhaps $H_0: \mu = \mu_0$ is incorrect
- ullet If $\hat{\mu}$ is "too far" from μ_0 , take this as statistical evidence that $\mu
 eq \mu_0$

But how far is too far?

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

41 / 60

Agenda A Little Bit of Math

000

Roadmap

Hypothesis Testing (Two-Sided)

Assume for the moment that $Y_i \overset{iid}{\sim} \operatorname{Normal}(\mu_0, \sigma^2)$, $i=1,\dots,n$

We have

$$\begin{split} Y_i \overset{iid}{\sim} \operatorname{Normal}(\mu_0, \sigma^2) &\implies \overline{Y} \sim \operatorname{Normal}\left(\mu_0, \frac{\sigma^2}{n}\right) \\ &\implies \frac{(\overline{Y} - \mu_0)}{\sqrt{\sigma^2/n}} \sim \operatorname{Normal}(0, 1) \\ &\implies \underbrace{\frac{(\overline{Y} - \mu_0)}{\sqrt{\widehat{\sigma^2}/n}}}_{\text{t-statistic}} \sim t(n-1) \end{split}$$

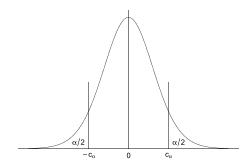
Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 42/6

Agenda A Little Bit of Math

Course Admin

Roadmap

Hypothesis Testing (Two-Sided)



Reject H_0 if $t>c_{\alpha}$ or $t<-c_{\alpha}$, where c_{α} is such that $\alpha=0.01,0.05,0.10$ i.e., reject if $\Pr(|t|>c_{\alpha})<\alpha$ given $\mu=\mu_0$ (Prob of rejecting correct null)

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

43 / 60

Hypothesis Testing (Two-Sided)

```
NVal <- c(20, 50, 100, 200, 400)
alphaVal <- c(0.01, 0.05, 0.1)
Critval <- matrix(rep(0,length(NVal)*length(alphaVal)), ncol = length(NVal))
colnames(Critval) <- paste0("N=",NVal)
rownames(Critval) <- paste0("alpha=",alphaVal)
for (i in 1:length(alphaVal)){
   for (j in 1:length(NVal)){
      Critval[i, j] = qt(1-alphaVal[i]/2, df=NVal[j]-1)
   }
}
round(Critval,3)</pre>
```

N=20 N=50 N=100 N=200 N=400 alpha=0.01 2.861 2.680 2.626 2.601 2.588 alpha=0.05 2.093 2.010 1.984 1.972 1.966 alpha=0.1 1.729 1.677 1.660 1.653 1.649

Anthony Ta

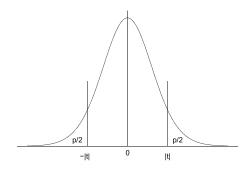
ECON207 Session 1

Corrected Version: 20 Aug 2024

Course Admin

Roadmap

Hypothesis Testing (Two-Sided)



Equivalently, reject $H_0: \mu = \mu_0$ if "p-value" $\Pr(|t| > c_\alpha)$ is less than α

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 45 / 60

Asymptotic Normality

When $N \to \infty$, the t-distribution converges to the Normal(0,1)

Then critical values $c_{0.01} \mbox{, } c_{0.05}$ and $c_{0.10}$ are 2.576, 1.96 and 1.645 respectively

ullet What if Y_i is not Normally distributed? Then t-statistic does not have t distribution.

However, we have the following result

Lindeberg-Levy Central Limit Theorem: If $\{Y_i\}_{i=1}^n$ are iid with $E(Y_i)=\mu$ and $Var(Y_i)=\sigma^2<\infty$ for all i, then

$$\sqrt{N}(\overline{Y}-\mu) \overset{d}{\to} \mathsf{Normal}(0,\sigma^2)$$

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 46 / 60

Agenda A Little Bit of Ma

Course Admin

Roadmap

Asymptotic Normality (Simulation Example)

Continuation of Simulation Example (200 people drawing independent samples from population)

```
n = 5, 10, 50, 100, 500, 1000
```

Plot distribution of $\sqrt{n}(\overline{Y}_n - \mu)$ (here $\mu = 1$)

```
plots2 <- vector("list", length=6)
smplsizes <- c(5, 10, 50, 100, 500, 1000)
for (i in 1:length(smplsizes)){
    n <- smplsizes[i]
    means <- colMeans(AllSamples[1:n,])
    datmeans <- data.frame(scaledmeans=sqrt(n)*(means-1))
    plots2[[i]] <- ggplot(data=datmeans, aes(x=scaledmeans)) +
        geom_histogram(aes(y=..density..), color="black", fill="lightblue", binwidth=0.2) +
        stat_function(fun=dnorm, args = with(dat, c(mean=0, sd=sqrt(2))), color="blue", size=1) +
        xlim(-4, 4) + ylim(0, 0.5) + labs(title = paste("sample size", smplsizes[i])) +
        theme_bw() + theme(plot.title = element_text(size=20))
}</pre>
```

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

.

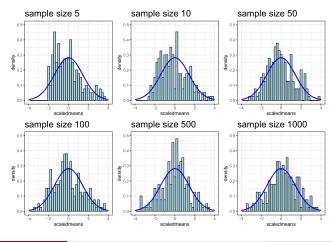
Agenda A Little Bit of Math

Course Admir

Roadmap

Asymptotic Normality (Simulation Example)

(plots2[[1]] | plots2[[2]] | plots2[[3]]) / (plots2[[4]] | plots2[[5]] | plots2[[6]])



Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

Hypothesis Testing (Two-Sided)

- " $\stackrel{d}{\rightarrow}$ " means convergence in distribution
- ullet when n is large, pdf of LHS is approximately the pdf of the Standard Normal
- Can also be shown that

$$\frac{\sqrt{n}(\overline{Y}-\mu)}{\sqrt{\widehat{\sigma^2}}} = \frac{\overline{Y}-\mu}{\sqrt{\widehat{\sigma^2}/n}} \overset{d}{\longrightarrow} \mathsf{Normal}(0,1)$$

You can replace $\widehat{\sigma^2}$ with $\widetilde{\sigma^2}$ or any other consistent estimator of σ^2

When n is large, can make the approximation $t \stackrel{a}{\sim} \operatorname{Normal}(0,1)$, where $\stackrel{a}{\sim}$ means "approximately distributed", even when Y_i is not Normally distributed

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

40 / 60

Agenda A Little Bit of Math

000

Roadmap

Hypothesis Testing (Two-Sided) Example

For our data

```
H_0: \mu = 30 \text{ vs } H_A: \mu \neq 30
```

```
y <- dat$earn; N<- length(y); muhat <- mean(y); s2hat <- var(y)
t <- (muhat - 30)/sqrt(s2hat/N)
pval_t <- 2*pt(abs(t), df=N-1, lower.tail = FALSE)
pval_n <- 2*pnorm(abs(t), lower.tail = FALSE)
cat("t-stat:", t)
cat("\n p-value (t-dist):", pval_t)
cat("\n p-value (Standard Normal):", pval_n)</pre>
```

t-stat: -2.086885

p-value (t-dist): 0.0369496

p-value (Standard Normal): 0.03689851

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

Agenda A Little Bi

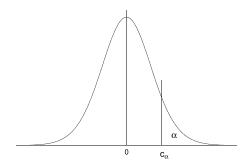
tatistics Review

Course Admin

Roadmap

Hypothesis Testing (One-Sided)

$$H_0: \mu < \mu_0 \text{ vs } H_A: \mu \geq \mu_0$$



Reject μ_0 if t-statistic is greater then c_α where c_α is that value such that $\Pr(t>c_\alpha)=\alpha$ under the null, $\alpha=0.01,0.05,0.10$.

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

1/60

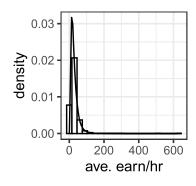
Agenda A Little Bit of Math

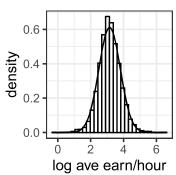
000

Roadmap

Estimation Again

Should we have worked with log(earn) instead of earn?





Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 52 / 6

Agenda A Li

Statis

tatistics Review

Course Admin

Roadmap

Estimation Again

To help us think about this, let's assume

$$\ln Y_i \overset{iid}{\sim} \mathsf{Normal}(\mu, \sigma^2)$$
 for all i

where Y_i is earnings of individual i (seems reasonable!)

Then $Y_i \overset{iid}{\sim} \operatorname{Log-normal}(\mu, \sigma^2)$ for all i

- $E(Y_i) = e^{\mu + \frac{1}{2}\sigma^2} = e^{\mu}e^{\frac{1}{2}\sigma^2}$
- $Var(Y_i) = e^{2\mu + \sigma^2} (e^{\sigma^2} 1)$
- $Median(Y_i) = e^{\mu}$

Anthony Tay

CON207 Session 1

Corrected Version: 20 Aug 2024

53 / 60

Agenda A Little Bit of Math

000

Roadma

Estimation Again

Can estimate $\mu = E(\ln Y)$ and $\sigma^2 = \mathit{Var}(\ln Y)$ in the usual way

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^n \ln Y_i \quad \text{and} \quad \widehat{\sigma^2} = \frac{1}{n-1} \sum_{i=1}^n (\ln Y_i - \widehat{\mu})^2$$

But we are interested in mean and variance of Y, not $\ln Y$ — must convert back!

- ullet estimate of mean hourly earnings: $e^{\widehat{\mu}}e^{\frac{1}{2}\widehat{\sigma^2}}$ (Not $e^{\widehat{\mu}}$)
- ullet estimate of median hourly earnings: $e^{\widehat{\mu}}$
- \bullet estimate of variance of hourly earnings: $e^{2\widehat{\mu}+\widehat{\sigma^2}}(e^{\widehat{\sigma^2}}-1)$

Also need to compute s.e. (use bootstrap?)

Anthony Tay

ECON207 Session 1

Corrected Version: 20 Aug 2024

Estimation Again

```
y <- log(dat$earn)
n2ln_mu \leftarrow function(m, v){exp(m+0.5*v)}
n2ln_vr \leftarrow function(m, v)\{exp(2*m + v)*(exp(v) - 1)\}
n2ln_md <- function(m, v){exp(m)}
m <- mean(y)
v <- var(y)
earnmean <- n2ln_mu(m,v)
earnvar <- n2ln_vr(m,v)
earnmed <- n2ln_md(m,v)
set.seed(456)
B <- 200
                             ## Bootstrap replication sample
bvars <- bmeans <- bmeds <- rep(NA, B)
                                                   ## To store the bootstrapped statistics
 ysmpb <- sample(y, 4946, replace=T) # Sample with replacement from orig. smp.
  {\tt m1} \leftarrow {\tt mean}({\tt ysmpb}) # mean of bootstrap sample of ln(earn)
                          # variance of boostrap sample of ln(earn)
  v1 <- var(ysmpb)</pre>
  bmeans[b] \leftarrow n2ln_mu(m1,v1) # convert to mean of earn, and store
  bvars[b] \leftarrow n2ln\_vr(m1,v1) \quad \text{\# convert to variance of earn, and store} \\ bmeds[b] \leftarrow n2ln\_md(m1,v1) \quad \text{\# convert to median of earn, and store}
```

ECON207 Session 1

Corrected Version: 20 Aug 2024

Estimation Again

```
cat("mean hr. earn.: ", round(earnmean, 3),
    " s.e.:", round(sqrt(var(bmeans)),3), "\n")
cat("var. hr. earn.: ", round(earnvar, 3),
    " s.e.:", round(sqrt(var(bvars)), 3), "\n")
cat("median hr. earn.: ", round(earnmed, 3),
    " s.e.:", round(sqrt(var(bmeds)),3),"\n")
```

28.907 s.e.: 0.305 mean hr. earn.: 443.902 s.e.: 20.8 var. hr. earn.: median hr. earn.: 23.361 s.e.: 0.215

Session 1.3

Session 1.3 Course Arrangements

- Course Arrangements
 - Webpages, reading material, software
 - Grading system

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 57 / 60

Course Arrangements

- Course webpage vs course eLearn page
- Course Notes
- Software: R
 - Not covered in class (learn by playing with code supplied)
 - Needed for Assignment
 - NOT EXAMINABLE (no stress!)

Roadmap

Course Arrangements (Evaluation)

Individual Assignments 50%

- Short Weekly Review Questions (20%), graded based on submission, feedback via detailed answer sheet
- Three longer assignments (30%), graded in detail.

Exam 40%

• Closed book, calculators allowed, no cheat sheet

Class and Forum Participation 10%

- ask/answer questions in class
- ask/answer questions on forum page
- post typos and errors on forum page

hony Tay ECON207 Session 1

Corrected Version: 20 Aug 2024 59 / 6

Agenda A Little Bit of Math

000

Roadmap

Roadmap

• This Session 1: Statistics Review

- Next Session 2: Simple Linear Regression
- Session 3: Estimator Standard Errors; Multiple Linear Regression
- Session 4: Matrix Algebra
- Session 5: OLS using Matrix Algebra
- Session 6: Hypothesis Testing
- Session 7: Prediction
- Session 8: Instrumental Variable Regression
- Session 9: Logistic and Other Regressions
- Session 10: Panel Data Regressions
- Session 11: Introduction to Time Series
- Session 12: Time Series Regressions

Anthony Tay ECON207 Session 1 Corrected Version: 20 Aug 2024 60 / 60