
Assignment 2

Questions 1 to 4 are based on the following multiple linear regression

𝑦 = 𝑋𝛽 + 𝜖 , 𝐸(𝜖 ∣ 𝑋) = 0 , Var(𝜖 ∣ 𝑋) = 𝜎2𝐼𝑛 ,

where 𝑦 is an 𝑛 × 1 vector and 𝑋 is a 𝑛 × 𝑘 matrix with full column rank, i.e., there are
𝑘 − 1 regressors plus an intercept term.

Question 1

(a) Show that 𝑦T𝑦 = 𝑦T𝑋(𝑋T𝑋)−1𝑋T𝑦 + ̂𝜖T
𝑜𝑙𝑠 ̂𝜖𝑜𝑙𝑠.

(b) If 𝐴 is a 𝑛 × 𝑛 matrix, and 𝑒𝑖 is the 𝑛 × 1 vector with 1 in the 𝑖th position and all other
terms zero, show that 𝑒T

𝑖 𝐴𝑒𝑖 = 𝑎𝑖𝑖, the 𝑖th diagonal element of 𝐴.

(c) Let ℎ𝑖𝑖 is the 𝑖th diagonal element of the matrix 𝑋(𝑋T𝑋)−1𝑋T, i.e.,

ℎ𝑖𝑖 = 𝑒T
𝑖 𝑋(𝑋T𝑋)−1𝑋T𝑒𝑖 = 𝑋𝑖∗(𝑋T𝑋)−1𝑋T

𝑖∗ ,

where 𝑋𝑖∗ is the 𝑖th row of the 𝑋 matrix.

i. Show that 0 ≤ ℎ𝑖𝑖 ≤ 1. Hint: replace 𝑦 with 𝑒𝑖 in part (a).

ii. Show that ∑𝑛
𝑖=1 ℎ𝑖𝑖 = 𝑘.

Question 2

(a) Show that ̂𝜖𝑜𝑙𝑠 = 𝑀𝜖 where 𝑀 = 𝐼𝑛 − 𝑃 = 𝐼𝑛 − 𝑋(𝑋T𝑋)−1𝑋T.

(b) Show that 𝐸(𝜖2
𝑖,𝑜𝑙𝑠 ∣ 𝑋) = 𝜎2(1 − ℎ𝑖𝑖). (Hint: 𝐸(𝜖2

𝑖,𝑜𝑙𝑠 ∣ 𝑋) is the 𝑖-diagonal element of
the variance matrix Var(𝜖𝑜𝑙𝑠 ∣ 𝑋)).
Remark: In other words, each squared residual is a downward biased estimate of 𝜎2.

(c) Show using the result in part (b) of this question and part (b.ii) of Qn. 1, that

𝜎2 = 1
𝑛 − 𝑘

𝑛
∑
𝑖=1

̂𝜖2
𝑜𝑙𝑠

is an unbiased estimator for 𝜎2.

Question 3 (Influential Observations)

Suppose the 𝑖th observation is omitted, and let ̂𝛽(−𝑖) is the OLS estimator for 𝛽 based on
the remaining observations. It can be shown (but you’re not being asked to do so) that

̂𝛽𝑜𝑙𝑠
(−𝑖) = ̂𝛽𝑜𝑙𝑠 − ( 1

1 − ℎ𝑖𝑖
) (𝑋T𝑋)−1𝑋T

𝑖∗ ̂𝜖𝑜𝑙𝑠
𝑖 .
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An observation can be considered to be an influential observation if omitting it changes
its fitted/predicted value substantially. The fitted value for observation 𝑖 is 𝑋𝑖∗ ̂𝛽𝑜𝑙𝑠 and
the predicted value for observation 𝑖 when it is omitted from the sample is 𝑋𝑖∗ ̂𝛽𝑜𝑙𝑠

(−𝑖). Show
that

𝑋𝑖∗ ̂𝛽𝑜𝑙𝑠 − 𝑋𝑖∗ ̂𝛽𝑜𝑙𝑠
(−𝑖) = ( ℎ𝑖𝑖

1 − ℎ𝑖𝑖
) ̂𝜖𝑜𝑙𝑠

𝑖 .

Remark: One easy way to check for influential observations is to plot ℎ𝑖𝑖/(1 − ℎ𝑖𝑖) against
𝑖. Alternatively, since 0 ≤ ℎ𝑖𝑖 ≤ 1 and its average value is 𝑘/𝑛, we can simply look at the
ℎ𝑖𝑖 to see if any are very close to 1.

Question 4 (Leave-One-Out-Cross-Validation)

To check how well the fitted model might perform as a predictive model, we estimate the
mean squared prediction error in the following manner:

• for each 𝑖, we leave out the 𝑖-th observation and and use the remaining 𝑛 − 1 obser-
vations to fit the model. We use this fitted model to predict the 𝑖-th observation and
collect the prediction error

̂𝜖(−𝑖) = 𝑌𝑖 − 𝑋𝑖∗ ̂𝛽𝑜𝑙𝑠
(−𝑖) .

• After completing the above for all 𝑖, we estimated the “Leave-One-Out-Cross-
Validated” Mean Square Prediction Error (LOOCV-MSPE) as

1
𝑛

𝑛
∑
𝑖=1

̂𝜖2
(−𝑖) .

It turns out that we do not need to estimate 𝑛 regressions in order to calculate the LOOCV-
MSPE. Show that

̂𝜖(−𝑖) = ̂𝜖𝑜𝑙𝑠
𝑖

1 − ℎ𝑖𝑖
.

Question 5

The dataset ceosal1 from the wooldridge library contains 209 observations CEO salaries.
We will use 𝑙𝑠𝑎𝑙𝑎𝑟𝑦 (log of 1990 salary), 𝑙𝑠𝑎𝑙𝑒𝑠 (log of 1990 sales), 𝑟𝑒𝑜 (return on equity
1988-1990 average) and 𝑟𝑜𝑠 (return on firm stock 1988-1990).

Create two new series: 𝑟𝑜𝑠𝑛𝑒𝑔 = 1 if 𝑟𝑜𝑠 ≤ 0, 0 otherwise, and 𝑟𝑜𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑟𝑜𝑠 if 𝑟𝑜𝑠 > 0,
0 otherwise. You can use the following two commands to do this:

dat$rosneg <- (dat$ros<0)
dat$rosfiltered <- ifelse(dat$ros>0, dat$ros, 0)

The variable 𝑟𝑜𝑠𝑛𝑒𝑔 is actually a TRUE/FALSE series which will be converted to 1s and 0s
by the lm() function.
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(a) Explain how 𝑟𝑜𝑠 affects 𝑙𝑠𝑎𝑙𝑎𝑟𝑦 in each of the three regressions below:

[A] 𝑙𝑠𝑎𝑙𝑎𝑟𝑦 = 𝛽0 + 𝛽1𝑙𝑠𝑎𝑙𝑒𝑠 + 𝛽2𝑟𝑜𝑒 + 𝛽3𝑟𝑜𝑠 + 𝜖
[B] 𝑙𝑠𝑎𝑙𝑎𝑟𝑦 = 𝛽0 + 𝛽1𝑙𝑠𝑎𝑙𝑒𝑠 + 𝛽2𝑟𝑜𝑒 + 𝛽3𝑟𝑜𝑠𝑛𝑒𝑔 + 𝜖
[C] 𝑙𝑠𝑎𝑙𝑎𝑟𝑦 = 𝛽0 + 𝛽1𝑙𝑠𝑎𝑙𝑒𝑠 + 𝛽2𝑟𝑜𝑒 + 𝛽3𝑟𝑜𝑠 + 𝛽4𝑟𝑜𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 + 𝜖

(b) Estimate the three regressions in part (a), and report your results using heteroskedasticity-
robust standard errors (use the vcovHC() function from the sandwich package, with
type=HC0). Comment on your results, with a focus on the estimated effect of 𝑟𝑜𝑠 on
𝑙𝑠𝑎𝑙𝑎𝑟𝑦.

(c) Carry out heteroskedasticity-robust RESET tests on all three models, using the square
and cube of the fitted values. Comment on your results.

Question 6

The data set rdchem from the wooldridge library contains observations on 32 firms from
the chemicals industry in 1990. We are interested in the variables 𝑟𝑑𝑖𝑛𝑡𝑒𝑛𝑠 (research and
development as a percentage of sales), 𝑠𝑎𝑙𝑒𝑠 in millions, 𝑠𝑎𝑙𝑒𝑠𝑠𝑞 (𝑠𝑎𝑙𝑒𝑠2), and 𝑝𝑟𝑜𝑓𝑚𝑎𝑟𝑔
(profits as percentage of sales).

(a) First convert 𝑠𝑎𝑙𝑒𝑠 and 𝑠𝑎𝑙𝑒𝑠𝑠𝑞 to billion dollars and (billion dollars)2 respectively, then
estimate the regression

[A] 𝑟𝑑𝑖𝑛𝑡𝑒𝑛𝑠 = 𝛽0 + 𝛽1𝑠𝑎𝑙𝑒𝑠 + 𝛽2𝑠𝑎𝑙𝑒𝑠𝑠𝑞 + 𝛽3𝑝𝑟𝑜𝑓𝑚𝑎𝑟𝑔 + 𝜖
and report your results (you can assume homoskedastic errors).

(b) Compute ℎ𝑖𝑖 as defined in Qn 3. Which observations appear to be influential? (You can
construct the 𝑋 matrix yourself, or use X <- model.matrix(mdl) where mdl is the name
of the regression you estimated with the lm() object.)

(c) Drop the most influential observation and re-estimate the regression. Are there any
major changes in the estimation results?

(d) Dropping influential observations might not be the best solution. The data observa-
tion may contain important information, and dropping one influential observation might
turn another observation into an influential one. One alternative is to use Least Absolute
Deviation (LAD) estimation, where we choose estimators to minimize the sum of absolute
residuals rather than the sum of squared residuals. That is, we minimize

𝑛
∑
𝑖=1

| 𝑌𝑖 − ̂𝛽0 − ̂𝛽1𝑋𝑖1 − ⋯ − ̂𝛽𝑘𝑋𝑖𝑘 | .

This can be done in R using the rq() function. Install the quantreg library and then use
the following code to obtain the LAD estimates for equation [A]. Comment on your result.

library(quantreg)
mdl <- rq(rdintens ~ sales + salessq + profmarg, data=dat)
summary(mdl, se = "iid")
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