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Mathematics for Economics: Linear Algebra             Anthony Tay 
16.   Vectors of Random Variables 

 

When working with several random variables 1X , 2X , ..., nX , it is often convenient to arrange them in vector form  
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We can then make use of matrix algebra to help us organize and manipulate large numbers of random variables 
simultaneously. We define the expectation of a random vector as element-by-element expectation: 
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If X  is an ( )m n×  matrix of random variables, then [ ]E X  is the ( )m n×  matrix where the ( , )thi j  element is the mean 
of the ( , )thi j element of X , i.e.,  
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These definitions provide a neat way for computing the variances and covariances of the variables in X  “all at once”:  
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We call var[ ]x  the variance-covariance matrix of x .   

The formula var[ ] [( [ ])( [ ]) ]E E E ′= − −x x x x x  can be viewed as the matrix version of the variance formula 
2var[ ] [( [ ]) ]X E X E X= −  for a single variable. 
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Sometimes we want to compute a ‘covariance matrix’ between two vectors of random variables x  and y . We can 
compute  
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Rules for dealing with the mean vector and the variance-covariance matrix 

If x  is an ( 1)n×  vector of random variables, X  is an ( )m n×  matrix of random variables, b  is an ( 1)m×  vector of 
constants, and A  is an ( )m n×  matrix of constants, then  

1. [ ] [ ]E E+ = +Ax b A x b   

2. var -cov[ ] var[ ] ′+ =Ax b A x A .  

In particular, 
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3. A useful result is   
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The first of these is straightforward to show by simply writing out the expression +Ax b  in full and taking expectations. 
This formula is the matrix version of the usual single variable result 

[ ] [ ]E aX b aE X b+ = +  

 

To show (2), plug +Ax b  into the variance formula:  
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This is the matrix version of the single variable result  
2var[ ] var[ ]aX b a X+ = . 
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Note that a variance-covariance matrix must be “positive-definite”:  

1 1 2 2var[ ... ] var[ ] var[ ]n nc X c X c X ′ ′+ + + = =c x c x c  

has to be positive for all ≠c 0 , since variances must be positive.  

 

Exercise  Let 1
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x  be a vector of random variables, and  
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be constants. Write out +Ax b  in full, and take expectations to show that  

[ ] [ ]E E+ = +Ax b A x b  

 

The Multivariate Normal Distribution 

 

The random vector x  follows the multivariate normal distribution with  

mean 
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 and variance-covariance matrix 
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if its distribution has the form 
/ 2 1/ 2 1( ) (2 ) | | exp{ (1/ 2)( ) ' ( )}nf π − − −= − − −x Σ x μ Σ x μ . 

 

We denote this by ~ ( , )Nx μ Σ . This is analogous to the univariate normal pdf: 
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Exercise Write the joint pdf out without matrix notation for the bivariate case  
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x . 

Then show that 
1 2 1 2, 1 2 1 2( , ) ( ) ( )X X X Xf x x f x f x=  when 12 21 0σ σ= = . What does this say? 

 

Exercise Use computer software (say matlab) to plot the distribution of the bivariate normal for various parameter 
values.  
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The following are important properties of the multivariate normal: 
 
4. The conditional distributions are also normal. In particular, if 

1 1 11 12
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where 1x  and 1μ  are 1( 1)n × , 2x  and 2μ  are 2( 1)n × , 11Σ  is 1 1( )n n× , 12Σ  is 1 2( )n n× , 21Σ  is 2 1( )n n× , and 
2 2( )n n× , then 

a. the marginal distribution for 1x  is 1 11( , )N μ Σ  

b. the conditional distribution for 1x  given 2x  is 1|2 11|2( , )N μ Σ  where 
1

1|2 1 12 22 2 2( )−= + −μ μ Σ Σ x μ  and 1
11|2 11 12 22 21

−= −Σ Σ Σ Σ Σ  

 

Exercise In the bivariate case,   
2

1 1 11 12
2

2 2 21 22

~ ,
X

N
X

µ σ σ
µ σ σ

                  
 

(4a) says that 2
1 1 11~ ( , )X N µ σ  and 2

2 2 22~ ( , )X N µ σ . Write out the expressions in (4b). Note that the conditional mean 
of 1X  given 2X  is a linear function of 2X .    

 

Exercise Using the expressions for the conditional mean and conditional variance of 2X  given 1X , show that 

1 2 2 1 1, 1 2 | 2 1 1( , ) ( | ) ( )X X X X Xf x x f x x f x= . 

(You can make a similar argument for the general 1x  and 2x  case.) 
 
5. If ~ ( , )Nx μ Σ , then ~ ( , )N ′+ +Ax b Aμ b AΣA  
The expression +Ax b  is normal because linear combinations of normal random variables remain normal. The formulae 
for the mean and variance-covariance matrix are the usual ones. 
 
6. If ~ ( , )Nx μ Σ and 2 2 2

1 2( , ,..., )ndiag σ σ σ=Σ , then the random variables in x  are independent. 
 
The following make use of the fact that 

 The square of a standard normal variable has a 2
1χ  distribution; 

 The sum of n  independent 2
1χ  is a 2

nχ ; 

 If ~ (0,1)X N , 2~ nY χ  and X  and Y  are independent, then ~
/ n

X t
Y n

  

 If 2
1 ~ nY χ , 2

2 ~ mY χ , and 1Y  and 2Y  are independent, then 1
( , )

2

/ ~
/ n m

Y n F
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We have: 
 
7. If ~ ( , )Nx 0 I  and A  is symmetric, and idempotent with rank J , then the scalar random variable 2

( )~ Jχ′x Ax . In 
particular, 2

( )~ nχ′x x . 
Proof  
Because A  is symmetric, we can write ′=A CΛC , with ′ =C C I . Note that ~ ( , )N′C x 0 I  because 
var( )′ ′ ′= = =C x C IC C C I . That is, ′C x  is a vector of independently distributed standard normal variables. 

Write 

       2
1

n
i ii yλ

=
′ ′ ′ ′= = = ∑x Ax x CΛC x y Λy  

where ′=y C x . Each 2
iy  is an independent chi-sq degree one, since the iy ’s are independent standard normal 

variables. Because A  is idempotent, there are J  iλ ’s equal to one, and ( )n J−  iλ ’s that are zero. Relabeling the 

iy ’s so that the first iλ ’s are equal to one, we have  

2
1

J
ii y

=
′ =∑x Ax   

which is a sum of J  independent 2
Jχ  . Therefore 2

( )~ Jχ′x Ax . 
 
8. If ~ ( , )Nx μ Σ , then 1 2

( )( ) ( ) ~ nχ−′− −x μ Σ x μ . 

Proof  
Σ  is positive definite, symmetric, and full rank. Therefore we can write 1 1/ 2 1/ 2− − −=Σ Σ Σ  . Note that 

1/ 2 ( ) ~ ( , )N−= −z Σ x μ 0 I , therefore 

  1 1/ 2 1/ 2 2
( )( ) ( ) ( ( )) ( ) ~ nχ− − −′ ′ ′− − = − − =x μ Σ x μ Σ x μ Σ x μ z z . 

 
9. If ~ ( , )Nx 0 I , and A  and B  are symmetric and idempotent, then ′x Ax  and ′x Bx  are independent if =AB 0 .  

Proof 
Because A  and B  are symmetric and idempotent, we have ′ =A A A  and ′ =B B B . Therefore we can write the 
quadratic forms as ( ) ( )′ ′ ′ ′= =x Ax x A Ax Ax Ax . Because x  is normal with mean 0 , Ax also normal with mean 0 . 
For vectors of zero mean random variables, cov[ , ] [ ]E ′=x y xy  (why?). We have  

[ ] [ ]cov , [ ]E E′ ′ ′ ′ ′= = = =Ax Bx Axx B A xx B AB AB .  

Therefore, =AB 0  implies that Ax  and Bx  are normally distributed, with covariance 0 . This implies that Ax  
and Bx  are independent (why?), and therefore the quadratic forms  ′x Ax  and ′x Bx  are also independent. 
 

It follows from (7) that [ / ( )]
[ / ( )]

rank
rank

′
′

x Ax A
x Bx B

 is distributed ( )( ) , ( )rank rankF A B . 

 
10. If ~ ( , )Nx 0 I , and A  is symmetric and idempotent, then Lx  and ′x Ax  are independent if =LA 0 . 

 Proof 

 Same idea as in (9).  
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We use these results to prove some standard results in statistics. Suppose 1 2, ,..., nX X X  are n  independent draws from 
a 2( , )N µ σ  distribution, i.e. 

2~ ( , )N σx μ I . 

where μ  is an ( 1)n×  vector 
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We know that the sample mean 
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is normally distributed (because a linear combination of normal variables is normal) with mean  

[ ]
1 1

1 1 1[ ]
n n

i i
i i

E X E X E X n
n n n

µ µ
= =

 
= = = = 

 
∑ ∑  

and variance 

[ ]
2

2
2 2

1 1

1 1 1var[ ] var var
n n

i i
i i

X X X n
n nn n

σσ
= =

 
= = = = 

 
∑ ∑  

 

Furthermore, 
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Unfortunately, this result is not very helpful if, for instance, you want to test a hypothesis on µ , since 2σ  is general 
unknown, and must be estimated. An unbiased estimator is  
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Putting all this together, we have: 
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One idea, then, is to substitute 2σ  with 2σ̂  in 
2 /

X

n

µ

σ

−  to get the ‘t-statistic’ 

2ˆ /

Xt
n

µ

σ

−
= . 

Unfortunately, the t -statistic does not have a standard normal distribution.  

 

We use the results discussed earlier to derive the distribution of the t - statistic. We begin by deriving a matrix 
expression for 2σ̂ . Observe first that  
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An interesting property of the matrix 1( )−′ ′= −M I i i i i  is that it is symmetric and idempotent, with rank 1n − . A matrix 
M  is symmetric if ′=M M . It is idempotent if =MM M . 
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Symmetric:  ( ) ( )1 1 1( ) ( ) ( )− − −′ ′′ ′ ′ ′ ′′ ′ ′ ′= − = − = − =M I i i i i I i i i i I i i i i M   

Idempotent:   
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Because M  symmetric and idempotent, ( ) ( )rank trace=M M , and 

( )1 1 1( ) ( ) ( ( ) ) ( ( ) ) 1trace trace trace n trace n− − −′ ′ ′ ′ ′ ′− = − = − = −I i i i i I i i i i i i i i  

Furthermore, note that  

( )1 ~ ( , )N
σ

−x μ 0 I   

( )= −Mx M x μ  since =Mμ 0  (why?) 
 
Together with the fact that M  is symmetric and idempotent with rank 1n − , result (7) implies that 

2
12 2

1 1 ( ) ( ) ~ nχσ σ −′ ′= − −x Mx x μ M x μ .  

This result is consistent with the fact that 2 2ˆ[ ]E σ σ= . The mean of a 2
1nχ −  is 1n − , i.e. 

2
1 [ ] 1E n
σ

′ = −x Mx .   

Since 2 1ˆ
1n

σ ′=
−

x Mx , the result follows. The fact that  

2
2

12 2
ˆ( 1) 1 ~ n

n σ χ
σ σ −
− ′= x Mx , 

which we have just shown, is of course a much stronger one. The result that 2 2ˆ[ ]E σ σ=  does not depend on the 
normality of x . If we have normality of x , then we have the 2χ  result.    
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Finally, note that  

( ) 11 ( ) ( ) ~ (0,1)n X Nµ
σ σ

−′ ′− = −i i i x μ ,  

 and that  
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which says that  
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are independent. Therefore, 
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Of course, if iX ’s are not random draws from 2( , )N µ σ , then all of these results do not hold (except [ ]E X µ= , 

2var[ ] /X nσ=  and 2 2ˆ[ ]E σ σ= , which does not require the normality assumption). Under reasonable conditions, the 
t -statistic will converge to the normal as the sample size grows.       
 
 


