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Mathematics for Economics: Linear Algebra       Anthony Tay 
13.   Eigenvalues and Eigenvectors  
 
Pre-multiplying a non-zero ( 1)n×  vector x  by an ( )n n×  matrix A generally results in a very different vector (different 
length, different direction). However, in some cases, the new vector is just a multiple of the original vector (same or 
opposite direction, only length may have changed). 
 

Example 1  Let 
1 2
3 0
 

=  
 

A . We have  

1 2 1 5
3 0 2 3
     

=     
     

 

1 2 1 3 1
3

3 0 1 3 1
       

= =       
       

  same vector, only stretched by multiple of 3. 

The vector 
1
1
 
 
 

 is called an eigenvector of A, and 3 is called an eigenvalue of A. 

Another eigenvector of A is 
2
3

1
 −
 
 

, since 

2 4 2
3 3 31 2

2
3 0 1 2 1

     − − 
= = −       −       

  opposite direction, 2− ×  the original vector. 

This eigenvector is associated with the eigenvalue 2− . 
 
 

Example 2  Let 
0.9 0.3
0.1 0.7
 

=  
 

B . We have  

 
0.9 0.3 1 0.6 1

(0.6)
0.1 0.7 1 0.6 1

− − −       
= =       

       
 same direction, reduced by factor of 0.6. 

 
0.9 0.3 3 3 3

(1)
0.1 0.7 1 1 1
       

= =       
       

 same vector is returned. 

 

The vectors 
1

1
− 
 
 

 and 
3
1
 
 
 

 are eigenvectors of the matrix B, and with corresponding eigenvalues 0.6 and 1 respectively. 

 
Eigenvalues and eigenvectors are useful in many applications, including dynamic problems involving differential or 
difference equations. Eigenvalues (and eigenvectors) are also intimately connected to other matrix concepts such as the 
determinant, rank, and definiteness of a matrix. 
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Example 3 Certain matrices can be decomposed into the following form 
1−=B PΛP  

where the columns of S are the eigenvectors of B, and Λ is a diagonal matrix with the eigenvalues making up the 
diagonal. For instance, you can verify that 

1

1 1
4 4

31
4 4

0.9 0.3 3 1 1 0
0.1 0.7 1 1 0 0.6

−

 −     
= =        −       

S Λ S

B




. 

Suppose 1t t+ =x Bx  for all 0,1,2,...t = . For a given 0x , what is 100x ? What happens as t →∞ ? Obviously 
100

100 0=x B x , and in general 0
t

t =x B x . In order to calculate B to the power of 100, we can exploit the decomposition 
above to get 

1

1 1 1 1

 instances of 

t t

t −

− − − −= =
PΛP

B PΛP PΛP PΛP PΛ P



. 

The power tΛ  is straightforward to compute, as it is a diagonal matrix. In this example, it is also obvious that as t →∞ , 
we have  

1 0 1 0
0 00 0.6

t
t

t

   
= →   
    

Λ  as t →∞ , 

so we can compute that 
3 31 1

4 4 4 4
0 0 031 1 1

4 4 4 4

3 1 1 0
1 1 0 0

t
t

  −   
= → =       −       

x B x x x  as t →∞ . 

 
Example 4 In Examples 1 and 2, one may have noticed that 

det( ) 6 (3)( 2)= − = −A  and ( ) 1 3 ( 2)tr = = + −A  
and 

det( ) 0.6 (1)(0.6)= =B  and ( ) 1.6 1 0.6tr = = +B . 

In general, the product of the eigenvalues of a matrix gives its determinant, and the sum of the eigenvalues gives its 
trace. 

 
Definition For any n n×  matrix A , a non-zero vector x is said to be an eigenvector of A if  
  λ=Ax x  for some scalar λ   

The scalar λ  is said to be an eigenvalue of A  associated with the eigenvector x . 
 
To find the eigenvalues and eigenvectors of a square matrix A, we note that  

( )λ λ λ= ⇔ − = ⇔ − =Ax x Ax x 0 A I x 0 . 

This system of equation has a non-trivial solution ≠x 0  only if  

det( ) 0λ− =A I   

(this is called the characteristic equation of the matrix A ). Therefore, we can find the eigenvalues of A  by finding all 
λ  that satisfy det( ) 0λ− =A I . Then, for each λ , we find the associated eigenvector x  from the equation ( )λ− =A I x 0 . 
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Example 5  Find the eigenvalues of the matrix 
1 2
3 0
 

=  
 

A .  

The eigenvalues satisfy det( ) 0λ− =A I . Since 

21 2 1 0 1 2
det( ) det det 6 ( 3)( 2),

3 0 0 1 3
λ

λ λ λ λ λ λ
λ

   −     
− = − = = − − = − +        −        

A I  

the eigenvalues are 3λ =   and 2λ = − .  

For 3λ = , the system ( )λ− =A I x 0  is 

1 1

2 2

1 2 2 2 0
3 3 3 0

x x
x x

λ
λ

− −        
= =        − −        

 

which gives 1 2x x= , i.e. any vector of the form 
1
1

s  =  
 

x  is an eigenvector of A  associated with 3λ = . Similarly, for 

2λ = − , the system ( )λ− =A I x 0  is 

1 1

2 2

1 2 3 2 0
3 3 2 0

x x
x x

λ
λ

−         
= =        −        

 

which gives 2
1 23x x= − , i.e., any vector of the form 

2
3

1
s
 −

=  
 

x  is an eigenvector of A  associated with 2λ = − . 

 
Note that if [ ]T1 2x x=x  is an eigenvector associated with an eigenvalue λ , then the vector [ ]T1 2s sx sx=x  for any 
s  is also an eigenvector of A  associated with λ , since 

( ) ( )s sλ λ= ⇔ =Ax x A x x .  

For example, for the matrix A in example 1, the vectors [ ]T1 1=x , [ ]T2 2 , [ ]T3 3 , and so on, are all eigenvectors 
associated with the eigenvalue 3λ = ; there is an entire line of eigenvectors associated with this eigenvalue. In some 
applications, we restrict eigenvectors to unit length, so the eigenvector for A associated with the eigenvalue 3λ =  is 

T
1 1

2 2
 =  x . 

 
Exercises 
 
1.    Find the eigenvalues and associated eigenvectors of the matrices 
 

(a)    
5 2
4 1

− 
 − 

 ;  Ans: Eigenvalues are 3λ =  and 1λ =  with eigenvectors
1
1

s   
 

 and 
1
2

t  
 
 

 resp.  

(b)   
1 1
4 1
 
 
 

   (c)   
0.8 0.3
0.2 0.7
 
 
 

        (d)   
1 2
2 4
 
 
 

     

(e)   
2 1
1 4

 
 − 

      (f)   
1 0 0
2 1 0
5 3 2

 
 
 
  

  

Exercise 1(d) shows that eigenvalues may take value zero. There is nothing unusual about this, although it does say 
something important regarding the matrix (more on that later). 
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In general, an ( )n n×  matrix will have n  eigenvalues but exercises 1(e) and (f) shows that these eigenvalues need not 
be distinct. The matrix in exercise 1(e) has eigenvalue 3λ = , occurring twice. In exercise 1(f), the eigenvalues are 1λ = , 
1, and 2. We say that the eigenvalue 1λ =  occurs with multiplicity 2. 
 
In the examples we have seen so far, there was a single line of eigenvectors associated with a given eigenvalue. In some 
cases, there are multiple lines of eigenvectors associated with a single eigenvalue:   
 
2. Find the eigenvalues of the matrix  

2 0
0 2
 

=  
 

A .  

Show that any vector ≠x 0  is an eigenvector associated with the eigenvalues. Does this make any geometric sense? 
 
 
Note that eigenvalues can take complex values. 
 

3.     Find the eigenvalues and associated eigenvectors of the matrix 
2 4
2 6

 
=  − 

A .  

 

You should find  4 2iλ = ± . The eigenvectors can be expressed in many ways. One possibility is 
1

1
i

s
− 

 
 

  and  
1

1
2

t i
 
 − 
 

  

respectively. 
 

~~~ 
 

A detailed look at the (2× 2) case  
We study the (2 2)× case in detail. A few of the results obtained here apply only to the (2 2)×  case, but many 
generalize to the ( )n n×  case (albeit with more complicated proofs). Studying the (2 2)×  case will help us develop 
intuition for these results with a minimum of algebra. 
 

 Let 11 12

21 22

a a
a a
 

=  
 

A .  The characteristic polynomial is 

11 12

21 22

2
11 22 12 21 11 22 11 22 12 21

( ) det

( )( ) ( ) ( )

a a
a a

a a a a a a a a a a

λ
ρ λ

λ

λ λ λ λ

− 
=  − 
= − − − = − + + −

 

i.e.,      
2( ) ( ) det( )trρ λ λ λ= − +A A  

 
Therefore, the eigenvalues are 
 

2

1,2
( ) ( ) 4det( )

2
tr tr

λ
± −

=
A A A

  

  



Math for Econ: Linear Algebra  13-5 
 

Useful results 
 

1. The two eigenvalues of A  are 
real

identical
complex

 
 
 
 
 

   if    

2

2

2

( ) 4det( )

( ) 4det( )

( ) 4det( )

tr

tr

tr

 ≥
  = 
 <  

A A

A A

A A

 . 

 
The eigenvalues of a (2 2)×  matrix can be identical only if they are real since complex roots of a polynomial always 
appear in conjugate pairs. However, matrices that are (4 4)× or larger can have repeated pairs of complex roots. 
 
It is clear from the characteristic polynomial that if A  is triangular (or diagonal), i.e. if 12 0a =  or 21 0a = , then the 
eigenvalues of A  are simply its diagonal elements: 

1 11aλ =   and 2 22aλ = . 

 
2. The eigenvalues of a symmetric matrix are guaranteed to be real. In the (2 2)×  case, if 12 21a a=  then   

2( ) 4det( )tr −A A  = 2 2 2 2
11 22 11 22 12 11 22 12( ) 4( ) ( ) 4 0a a a a a a a a+ − − = − + ≥   

Note that the eigenvalues will also be distinct, unless 11 22a a=  and 12 21( ) 0a a= = . 
 
3.  The product of the eigenvalues of a (2 2)×  matrix gives its determinant. The sum of the eigenvalues gives the trace:  

1 2det( ) λ λ=A   and 1 2( )tr λ λ= +A   

In detail: 

( )

2 2

1 2

2 2

( ) ( ) 4det( ) ( ) ( ) 4det( )
2 2

1 ( ) ( ) 4det( )
4

det( )

tr tr tr tr

tr tr

λ λ
  + − − −  =
  
  

= − +

=

A A A A A A

A A A

A

 

1 2
2 ( ) ( )

2
tr trλ λ+ = =

A A .   

 
We will see that similar results hold for larger matrices. For the (2 2)×  case, one consequence of this result is that (when 
the eigenvalues are real):  

both eigenvalues are positive    ⇔    det( ) 0>A   and ( ) 0tr >A   

both eigenvalues are negative     ⇔    det( ) 0>A   and ( ) 0tr <A  

the two eigenvalues have opposite signs ⇔    det( ) 0<A  

 
4.   If A  is singular, i.e., det( ) 0=A , then at least one of the eigenvalues are zero:  

if det( ) 0=A  , then 1 ( )trλ = A  , 2 0λ =  ; 

if ( ) 0tr =A  and det( ) 0=A , then 1 2 0λ λ= =  . 
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5.   If 1λ  and 2λ  are the eigenvalues of A , then the eigenvalues of 2 =A AA  are 2
1λ  and 2

2λ  . The associated 
eigenvectors remain the same. 
 
We can deduce result 5 without referring to the formula for the eigenvalues. An eigenvalue 1λ   and the associated 
eigenvector 1x  satisfies 

1 1 1λ=Ax x   

Pre-multiplying by A  on both sides, we have 
2 2

1 1 1 1 1 1 1 1( )λ λ λ λ= = =A x Ax x x . 

This says that 2
1λ  is an eigenvalue of 2A , with associated eigenvector 1x . This result obviously generalizes to others 

powers of A , and to general ( )n n×  matrices. 
 
An important special case when the matrix A  is idempotent (that is, when =AA A ). Since =AA A , both AA  and A  
have identical eigenvalues, i.e., 2

i iλ λ= . This means that 1 and 0 are the only possible values for eigenvalues of 
idempotent matrices. 
 

6.   If 1λ  and 2λ  are the eigenvalues of A , and A  is invertible, then the eigenvalues of 1−A  are 11 / λ  and 21 / λ  , with 
the same associated eigenvectors. 
 
Starting with 1 1 1λ=Ax x  and pre-multiplying by 1−A  , we have  

1 1
1 1 1λ− −=A Ax A x  

But the LHS is 1x , therefore  1
1 1 1λ − =A x x , from which we get 

1
1 1 1(1 / )λ− =A x x . 

 

7.   The eigenvalues of TA  are the same as those of A . 
 
That the eigenvalues of the transpose are the same as those of the original matrix is easy to see – a matrix and its 
transpose share the same characteristic polynomial. 
 
8.   Suppose that the eigenvalues of A  are real and distinct, i.e. 1 2λ λ≠ . Then the eigenvectors 1x  and 2x  are linearly 
independent, i.e.   

1 1 2 2 1 2 0c c c c+ = ⇒ = =x x 0  . 

Proof Starting with 1 1 2 2c c+ =x x 0 , pre-multiply by A  to get 

1 1 2 2c c+ = =Ax Ax A0 0 . 

Substituting 1 1 1λ=Ax x   and 2 2 2λ=Ax x  gives  

1 1 1 2 2 2c cλ λ+ =x x 0 . 

Multiplying 1 1 2 2c c+ =x x 0 throughout by 1λ  gives  

1 1 1 2 1 2c cλ λ+ =x x 0 . 
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Substituting  1 1 1 2 1 2c cλ λ= −x x  into 1 1 1 2 2 2c cλ λ+ =x x 0  gives  

2 1 2 2 1 2c cλ λ− + =x x 0 , or 

2 2 1 2( )c λ λ− =x 0 . 

Since 2 ≠x 0  and 1 2λ λ≠  , we have 2 0c =  . A similar argument shows that 1 0c =  . 
 
9.   (Diagonalization) Suppose that the eigenvalues 1λ  and 2λ  of A  are real and distinct, with eigenvectors 1x  and 2x . 
Let 

[ ]1 2=P x x    and   1

2

0
0
λ

λ
 

=  
 

Λ  . 

Then  
1− =P AP Λ , or equivalently 1−=A PΛP . 

We say that A  is diagonalizable. 
 
We note first that 1−P  exists, since 1x   and 2x   are linearly independent. The equations 1 1 1λ=Ax x   and 2 2 2λ=Ax x  
can be put together into a single equation =AP PΛ . The result follows.  
 
10.   Suppose A  is symmetric (so we know its eigenvalues are real) with distinct eigenvalues 1 2λ λ≠ . Then the 
eigenvectors 1x  and 2x  are orthogonal, i.e. 1 2 0′ =x x .  

Proof   

We have 1 1 1λ=Ax x . Pre-multiplying the first by T
2x  gives T T

2 1 1 2 1λ=x Ax x x . Taking transpose gives 
T T T T T T
2 1 1 2 1 2 1 1 2( ) λ= = =x Ax x A x x Ax x x , where we have used the fact that A   is symmetric. We also have 2 2 2λ=Ax x . 

Pre-multiplying by T
1x  gives T T

1 2 2 1 2λ=x Ax x x . Therefore  
T T T

1 1 2 2 1 2 1 2 1 2( ) 0λ λ λ λ− = − =x x x x x x .  

Since 1 2λ λ≠ , we have T
1 2 0=x x .  

 
If the eigenvectors were chosen to have unit length, then the eigenvectors are orthonormal:  

T
1 2 0=x x  and T

1 1 1=x x . 

If we pick the unit eigenvectors when constructing the matrix P  in result (9), we would have T =P P I . In other words, 
we have 1 T− =P P . We say that the matrix P  is orthonormal. 
 
What about the case where the two eigenvalues are not distinct? For a (2 2)×  symmetric matrix A , 1 2 ( )λ λ λ= =  iff  

0
0
λ

λ
 

=  
 

A    

which is already diagonal. (Or put differently, every vector x  is an eigenvector, and we are at liberty to pick a pair of 
orthonormal eigenvectors to construct the matrix P , so we pick [ ]T1 1 0=x   and [ ]T2 0 1=x , i.e., we pick P  to be 
the identity matrix.) 
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We can therefore re-state result (10) as the next result: 
 
11.   Suppose A  is symmetric (in which case we know its eigenvalues are real, though perhaps not distinct). Then there 
exists an orthonormal matrix P such that 

1− =P AP Λ , or equivalently 1−=A PΛP  

where  
1

2

0
0
λ

λ
 

=  
 

Λ   and [ ]1 2=P x x  ,  

and where 1x  and 2x  are eigenvectors with unit length associated with the eigenvalues 1λ   and 2λ  respectively. This is 
the “Spectral Theorem for Symmetric Matrices”, stated and proved here for (2 2)×   matrices. (The result applies to 
general symmetric matrices). 
 
Exercises 
 

4.   The (non-symmetric) matrix 
5 2
4 1

− 
=  − 

A  has (real, distinct) eigenvalues 1 3λ =  and 2 1λ = − .  

(a)   Verify that 1 2( )tr λ λ= +A   and 1 2det( ) λ λ=A ; 

(b)   Verify that the eigenvalues of 2A  are 2
1λ   and 2

2λ  ; 

(c)   Verify that the eigenvalues of 1−A   are 11 / λ   and 21 / λ ; 

(d)   Verify that the eigenvalues of ′A  are the same as those of A . What are the associated eigenvectors?     

(e)   Verify that the eigenvectors of A  are linearly independent; 

(f)   Verify the diagonalization formula in result (10); 

(g)   Show that the eigenvectors are not orthogonal. 

 

5.   Find the eigenvalues and eigenvectors of 
1 2
2 4
 

=  
 

A . Verify result (11).   

 

6.   Eigenvectors are often normalized to length one. For instance, the eigenvector 
1
1
 

=  
 

x  of the matrix 
1 2
3 0
 

=  
 

A  

can be normalized to 
1/ 2

1/ 2

 
=  
  

x  so that  

1/22 2| | (1 / 2) (1/ 2) 1 = + = x .  

~~~ 
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The (3 3)×  case  

We take a brief look at the (3 3)×  case before moving to the general case. Let 

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 =  
  

A   

Its characteristic equation is 
 

  22 23 21 23 21 22
11 12 13

32 33 31 33 31 32
det( ) ( )det det det

a a a a a a
a a a

a a a a a a
λ λ

λ λ
λ λ

− −     
− = − − +     − −     

A I  (13.1) 

 
where we have expanded the determinant along the first row. The eigenvalues of A  are the roots of this equation. As 
before, the roots may be real or complex, they may all be distinct or there may be repeated roots. If a root is repeated 
once, we say it has multiplicity 2. In the special case where A  is (upper or lower) triangular or diagonal, the 
characteristic equation is particular easy to compute, since the determinant of such matrices is simply the product of its 
diagonal. In such cases, the eigenvalues are simply the diagonal elements of the matrix.  
 
Without expanding the expansion any further, we note that the characteristic equation is an order 3 polynomial, which 
we can write as  
 3 2

3 2 1 0( ) b b b bρ λ λ λ λ= + + +  (13.2) 

The third power of λ  appears only in the first term of the determinant expansion and has coefficient 3( 1)− . An order 
three polynomial has three roots (the eigenvalues), so we can write this equation as 

 3
1 2 3( ) ( 1) ( )( )( )ρ λ λ λ λ λ λ λ= − − − −  (13.3) 

From (13.1), the determinant of A  can be found by setting 0λ = . Doing so in equation (13.3) show that 

1 2 3det( ) λ λ λ=A  

As in the (2 2)×  case, the det( ) 0=A  iff one or more of the eigenvalues are zero. 
 
Observe that the second power of λ  also appears only in the first term in the expansion (13.1). Expanding the first term 
in (13.1) we have  

 
[ ]11 22 33 23 32

11 22 33 11 23 32

( ) ( )( )
( )( )( ) ( )

a a a a a
a a a a a a

λ λ λ

λ λ λ λ

− − − −

= − − − − −
 (13.4) 

so the second power of λ  in fact only appears in 11 22 33( )( )( )a a aλ λ λ− − − . Expanding this expression further, you 
can easily verify that the coefficient on 2λ  is 11 22 33a a a+ + , which is ( )tr A . Expanding (13.3), we see that the 
coefficient on 2λ  there is 1 2 3λ λ λ+ + . Matching coefficients, we see that 

1 2 3( )tr λ λ λ= + +A . 

All these results extend to the general ( )n n×  case: for an ( )n n×  matrix A  we have  

1 2 3det( ) ... nλ λ λ λ=A and 1 2( ) ... ntr λ λ λ= + + +A .  
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The arguments for results (5)-(10) in Section 2 also carry over to the ( )n n×  case with little or no amendment: if 1λ  is 
an eigenvalue of A , then 1λ   is also an eigenvalue of TA , 1

nλ   is an eigenvalue of nA , and if A  is invertible, then 

11 / λ  is an eigenvalue of 1−A ; Eigenvectors associated with distinct eigenvalues are linearly independent, and A  has 
n  distinct eigenvalues 1 2, , ..., nλ λ λ , with associated eigenvectors 1 2, , ..., nx x x  , then it is diagonalizable: letting 

[ ]1 2 n=P x x x    and   

1

2

0 0
0 0

0 0 n

λ
λ

λ

 
 
 =
 
 
 

Λ





   



 . 

Then  
1− =P AP Λ , or equivalently 1−=A PΛP . 

 
The general ( )n n×  case 
 
The Spectral Theorem for Symmetric Matrices also continues to hold: if the ( )n n×  matrix A  is symmetric, then  

(i)   all its eigenvalues are real; 

(ii)  the eigenvectors the correspond to different eigenvalues are orthogonal,  

(iii) there exists an orthonormal matrix P  (i.e. 1 T− =P P ) comprising the unit eigenvectors such that  

 1− =P AP Λ , or equivalently 1−=A PΛP  

The proof in the case when the eigenvalues are distinct is a simple extrapolation of the argument following result (11). 
For the proof when there are repeated roots, see Strang (2009) Section 6.4. 
 
Exercise 
 
7. Suppose Σ  is symmetric, with non-zero eigenvalues. Use the spectral theorem to define the matrix 1/2Σ  such 
that 1/2 1/2=Σ Σ Σ . Similarly, find 1/2−Σ  such that 1 1/2 1/2− − −=Σ Σ Σ . 
 
 
 
Eigenvalues and the Rank of a Matrix  
We often have to determine the rank of a matrix (the number of linear independent rows or columns contained in the 
matrix). The Spectral Theorem for symmetric matrices makes it very easy to do so. We use the following result: 

If A  is ( )m n×  and B  is ( )n n×  and full rank, then ( ) ( )rank rank=AB A  

which extends to the product CAB  where both C  and B  are full rank:  

( ) ( )rank rank=CAB A .  

This means that if A  is a square diagonalizable matrix, then 

1( ) ( ) ( )rank rank rank−= =A PΛP Λ   

The rank of Λ  is simply the number of non-zero terms on the diagonal, i.e. the number of non-zero eigenvalues of A .  
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Furthermore, if A  is symmetric and idempotent, then the eigenvalues of A  take on values 1 or 0 only, i.e., the diagonal 
of Λ  comprises only 1’s and 0’s. In this case,  

( ) trace( )rank =Λ Λ  

(remember that the trace of a square matrix is just the sum of the elements on its diagonal.)  Furthermore, because  

1−=Λ P AP  
we have  

1 1( ) ( ) ( ) ( )trace trace trace trace− −= = =Λ P AP PP A A  

where we have used the fact that ( ) ( )trace trace=AB BA  when both products exist. It is therefore very easy to find 
the rank of a symmetric idempotent matrix. Simply add up the elements in its diagonal – you don’t even have to find 
the eigenvalues! 
 
The result  

1( ) ( ) ( )rank rank rank−= =A P ΛP Λ   

always works for symmetric matrices since these are always diagonalizable. But this approach can also work with non-
diagonalizable matrices, and even non-square matrices. Recall that for any matrix A ,  

T( ) ( )rank rank=A A A  

Since TA A  is symmetric, we can compute its rank, and therefore the rank of A , by computing and counting the number 
of non-zero eigenvalues possessed by TA A . 
 
Exercise 
 

8. Let X  be an arbitrary ( )n k×  matrix such that 1( )−′X X  exists. Because ′X X  is symmetric (why?), we know 
that 1( )−′X X  is also symmetric (why?). Use this fact to show that the matrix 

( )′ ′−I X X X X  

is symmetric and idempotent. Find its rank. 
 
Positive Definiteness of Quadratic Forms  
A quadratic form is an expression of the form 

T=Q x Ax  

When A  is (2 2)× , this expression is 

[ ] 11 12 1T 2 21 2
11 1 12 21 1 2 22 2

21 22 2
( )

a a xx x
a x a a x x a x

a a x
   

= = = + + +   
   

Q x Ax  

For a general ( )n n×  matrix, we have 

[ ]
11 12 1 1

21 22 2 2T 1 2

1 1

1 2

n
n n

nn
ij i j

i j

n n nn n

a a a x
a a a xx x x

a x x

a a a x
= =

   
   
   = = =
   
   
   

∑∑Q x Ax
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The following are examples of quadratic forms: 

(i) [ ] 1 2 21 2
1 1 1 2 2

2

1 1
2

1 1
xx x

q x x x x
x
  

= = + +  
   

 

(ii) [ ] 1 2 21 2
2 1 2

2

2 0
2

0 1
xx x

q x x
x
  

= = +  
   

 

(iii) [ ] 1 2 21 2
3 1 1 2 2

2

1 2
4 3

2 3
xx x

q x x x x
x
  

= = + +  
   

 

(iv) [ ] 1 2 21 2
4 1 1 2 2

2

1 2
6 3

4 3
xx x

q x x x x
x
  

= = + +  
   

 

The quadratic forms in (i), (ii) and (iii) involve symmetric matrices, whereas (iv) does not. Note, however, that for any 
quadratic form involving a non-symmetric matrix, there is an equivalent one using a symmetric matrix. In the (2 2)×  
case, replace both 12a  and 21a  by 12 21( ) / 2a a+ . For example, corresponding to (iv) we have 

[ ] 1 2 21 2
4 1 1 2 2

2

1 3
6 3

3 3
xx x

q x x x x
x
  

= = + +  
   

. 

In other words, we can limit ourselves to studying quadratic forms involving symmetric matrices.  

For larger ( )n n× , matrices, replace A  with T( ) / 2+A A . 

In applications, we often need to determine the sign of a quadratic form for arbitrary values of ≠x 0 . For instance, the 
quadratic form 1q  can be written as  

2 2 2
1 1 1 2 2 1 22 ( )q x x x x x x= + + = +  

so we know that 1 0q ≥  no matter what values of 1x  and 2x  are chosen. We call such quadratic forms positive semi-
definite. The quadratic form 2q  has a similar (but stronger) behavior. This quadratic form can be written as 

2 2
2 1 22 0q x x= + >  

for all values of 1x  and 2x , not both equal to zero at the same time. This quadratic form is said to be positive definite. 
The quadratic form 3q , however, is “indefinite”: writing 

2 2
3 1 2 1 1 2 2( , ) 4 3q x x x x x x= + +  

we have 3( 2,1) 4 8 3 1q − = − + = −  whereas 3(2,1) 4 8 3 15q = + + = . That is, the quadratic form is negative for 
some values of 1x  and 2x , and positive for others. 
 

A quadratic form T=Q x Ax  is said to be  

-- positive definite if  T 0>x Ax  for all ≠x 0 ;  

-- positive semi-definite if  T 0≥x Ax  for all ≠x 0 ; 

-- negative definite if  T 0<x Ax  for all ≠x 0 ;  

-- negative semi-definite if  T 0≤x Ax  for all ≠x 0 ; 
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Although definiteness pertain to the quadratic form T=Q x Ax , we often apply the term to the matrix A . One 
application of these concepts is in optimization theory where the second order condition often involves determining the 
definiteness of the Hessian matrix. Another application is in ‘comparing matrices’.  
 
One interesting fact about definite symmetric matrices is they can be factorized into the product of a triangle matrix and 
its transpose. We state and explain this for positive definite symmetric matrices: 
 

Triangular Factorization Any positive definite symmetric ( )n n×  matrix A  has a unique 
representation of the form 

T=A LDL   

where L  is lower triangular with ones down the diagonal, and D  is diagonal with positive diagonal 
elements.  

 
We demonstrate this for a positive definite symmetric (3 3)×  matrix  

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 =  
  

A .  

Because A  is positive definite, we have 11 0a >   (...pick [ ]T 1 0 0=x ). We can construct the elimination matrix 

21

11

31

11

1

1 0 0

1 0

0 1

a
a

a
a

 
 
 

= − 
 
 −
 

E  

You can easily verify that  

11
T

1 1 22 23

32 33

0 0
0
0

a
b b
b b

 
 =  
  

E AE  

where 1 1 11/ij ij i jb a a a a= − .   

 
Note that if A  is positive definite, then T

1 1E AE  must also be positive definite: define y  such that T
1=x E y  which then 

allows us to write T T T
1 1 =y E AE y x Ax . Because 1E  is non-singular, = ⇔ =x 0 y 0 . Therefore T 0>x Ax   for all 

≠x 0  implies T T
1 1 0>y E AE y  for all ≠y 0 .  

  
Because T

1 1E AE  is positive definite, 22 0b >  (... pick T [0 1 0]=y ), so we can define 

32

22

2

1 0 0
0 1 0

0 1b
b

 
 
 =
 
 −
 

E  
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You can verify that  

11
T T

2 1 1 2 22

33

0 0
0 0
0 0

a
b

c

 
 =  
  

E E AE E  

where 
2

32

22
33 33

b
bc b= − .  

 
Call the resulting diagonal matrix D . Because 1E  and 2E  are lower triangular with ones down the diagonal, 2 1E E  
has the same structure. Furthermore, 1

2 1( )−=L E E  exists and has the same structure. Therefore 

T T T
2 1 1 2 = ⇔ =E E AE E D A LDL . 

We can go one step further. Defining  

11

22

33

0 0

0 0

0 0

a

b

c

 
 

=  
 
  

D ,  

we have T 1/2 1/2 T T= = =A LDL LD D L CC  where 1/2=C LD  is also lower triangular. This is the Cholesky factorization 
(or Cholesky decomposition) of A . These decompositions are related to, but different from, the eigenvalue-eigenvector 
decomposition discussed earlier.  
 
These arguments readily extend to the general case.  
 
Proving the indefiniteness of a matrix merely requires providing counter examples, as we did for 3q  above. To prove 
the definiteness of a matrix is much harder because we have to show that the requisite sign holds for all ≠x 0 . The 
objective here is to develop criteria for evaluating the definiteness of a matrix. We provide two sets of results, one using 
principal minors, and the other using eigenvalues. It is worthwhile previewing the results with (2 2)×  matrices, before 
results for the general case are given. 

 

For a given (2 2)×  symmetric matrix 11 12

12 22

a a
a a
 

=  
 

A , let  

T 2 2
1 2 11 1 12 1 2 22 2( , ) 2x x a x a x x a x= = + +Q x Ax ,  

for arbitrary ≠x 0 . Then 
 
(i) 1 2( , )x xQ   is positive semi-definite   ⇔   11 0a ≥ , 22 0a ≥  , and 2

11 22 12 0a a a− ≥ ;   

(ii) 1 2( , )x xQ  is positive definite  ⇔  11 0a >   and 2
11 22 12 0a a a− > ;   

(iii) 1 2( , )x xQ  is negative semi-definite ⇔   11 0a ≤ , 22 0a ≤  , and 2
11 22 12 0a a a− ≥ ;   

(iv) 1 2( , )x xQ  is negative  definite    ⇔   11 0a <   and 2
11 22 12 0a a a− > .   

Proof: 

(i)    Suppose 11 0a ≥ , 22 0a ≥  , and 2
11 22 12 0a a a− ≥ .  

Case 1: 11 0a = . Then 2
11 22 12 0a a a− ≥  implies 12 0a = , so the quadratic form is 2

1 2 22 2( , ) 0x x a x= ≥Q .  
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Case 2: 11 0a > . Then    
2 2

1 2 11 1 12 1 2 22 2

2 212 22
11 1 1 2 2

11 11
2 2

2 212 22 12
11 1 2 2 2

11 11 11

2 2
212 11 22 12

11 1 2 22
11 11

( , ) 2

( 2 )

(*)

x x a x a x x a x

a aa x x x x
a a

a a aa x x x x
a a a

a a a aa x x x
a a

= + +

= + +

     = + + −   
     
   − = + + 
   

Q

 

With 11 0a >  and 2
11 22 12 0a a a− ≥ , clearly 1 2( , ) 0x x ≥Q  for all 1 2,x x  not both equal to zero. 

 
We now show the converse: Suppose 2 2

1 2 11 1 12 1 2 22 2( , ) 2 0x x a x a x x a x= + + ≥Q  for all 1 2,x x  not both equal to zero. 
Then, in particular, we have  

11(1,0) 0a= ≥Q , and 22(0,1) 0a= ≥Q .  

If 11 0a = , then 1 12 1 22( ,1) 2 0x a x a= + ≥Q , which implies 12 0a = , since if 12 0a > , we can make 1( ,1) 0x <Q  by 
choosing 1x  a large enough negative number, and if 12 0a < , we can make 1( ,1) 0x <Q  by choosing 1x  to be a large 
enough positive number. Then 2

11 22 12 0a a a− = . If 11 0a >  , then we must have 2
11 22 12 0a a a− ≥ , otherwise we can 

make 1 2( , ) 0x x <Q  by choosing 1x  and 2x  to make 

  12
1 2

11
0ax x

a
+ = . 

Result (iii) is proved in a similar fashion. 
 
(ii)  Suppose 11 0a >  and 2

11 22 12 0a a a− > . Then from (*) , 1 2( , ) 0x x >Q . Suppose 1 2( , ) 0x x >Q  for all 1 2,x x  not 
both equal to zero. Then 11(1,0) 0a= >Q . Because 11 0a > , we can write (*) . Then 

2
12 11 11 22 12 11( / ,1) ( ) / 0a a a a a a− = − >Q , which implies 2

11 22 12 0a a a− > . 
 
Result (iv) is proved in similar fashion.  
We re-state this result for general ( )n n×  symmetric matrices (without proof): 

Theorem     Consider the ( )n n×  symmetric matrix A  and the associated quadratic form 

T

1 1
( )

n n

ij i j
i j

Q a x x
= =

= = ∑∑x x Ax ,  

where x  is an arbitrary non-zero n -dimensional vector. Let kD  be the k-th leading principal minor of A , and 

k∆  denote an arbitrary principal minors of order k . Then ( )Q x  is 
 
(a)  positive definite   ⇔     0kD >  for 1,2,...,k n=  

(b)  positive semi-definite     ⇔   0k∆ ≥  for 1,2,...,k n= . 

(c)  negative definite  ⇔     ( 1) 0k
kD− >  for 1,2,...,k n= . 

(d)  negative semi-definite ⇔   ( 1) 0k
k− ∆ ≥  for 1,2,...,k n= . 

It should be clear that the results stated and proved for the (2 2)×  case is a special case of this theorem. 
(Note: to add definition of principal minors and leading principal minors. For the moment, look it up.)  
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An Eigenvalue Approach Eigenvalues provide a more convenient way to determine definiteness of quadratic 
forms. Because we are dealing with symmetric matrices, which are diagonalizable, we can rewrite our quadratic form 
as 

T T T T 2 2 2 2
1 1 2 2 1 1( ) ... n n n ny y y yλ λ λ λ− −= = = = + + + +Q x x Ax x PΛP x y Λy  

where T=y P x . It should be clear that “ ( ) 0>Q x for all ≠x 0 ” is equivalent to “ ( ) 0>Q x for all ≠y 0 ”, which is in 
turn equivalent to 0rλ > , 1,...,r n= . Similarly, “ ( ) 0≥Q x for all ≠x 0 ”  is equivalent to “ ( ) 0≥Q x for all ≠y 0 ”, 
which is in turn equivalent to 0rλ ≥ , 1,...,r n= . That is, 

For a given symmetric ( )n n×  matrix A , let T( ) =Q x x Ax , for arbitrary ≠x 0 . Then 

(i)    ( )Q x  is positive semi-definite   ⇔    0rλ ≥ , 1,...,r n=    

(ii)    ( )Q x  is positive definite   ⇔    0rλ > , 1,...,r n=  

(iii)    ( )Q x  is negative semi-definite   ⇔    0rλ ≤ , 1,...,r n=  

(iv)    ( )Q x  is negative definite    ⇔    0rλ < , 1,...,r n=  


