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Mathematics for Economics: Linear Algebra       Anthony Tay 

12.   Kronecker Product and the Vec Operator  

The Kronecker Product 

We use partitioned matrices to prove a few results involving the Kronecker product and the Vec operator. 

Suppose ( )ij m na ×=A  and B  is a p q×  matrix. Then the Kronecker product ⊗  is defined to be the mp nq×  matrix 
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Example If 
1 2 0
3 0 1
 

=  
 

A  and 
5 2
1 3
 

=  
 

B , then 

5 2 10 4 0 0
1 3 2 6 0 0

15 6 0 0 5 2
3 9 0 0 1 3
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A B  

  If [ ]2 3 1′ =b , then [ ]2
1 0 2 3 1 0 0 0

2 3 1
0 1 0 0 0 2 3 1
   ′⊗ = ⊗ =   
   

I b  

Properties 

1. In general ⊗ ≠ ⊗A B B A ; the two products will in general not even have the same dimensions. 

2. ( )′ ′ ′⊗ = ⊗A B A B  

 Proof 
T
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3. ( ) ( ) ( )⊗ + = ⊗ + ⊗A B C A B A C  

 Proof: Left as as exercise. 

4. ( )( )
m n p q q sn r× × ××

⊗ ⊗ = ⊗A B C D AC BD   

Exercise: check that the dimensions of the matrices are such that all products involved exist.  

Proof:  
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The ( , )thi j  block of this product is [ ]1
n

ik kj ijk a c= =∑ BD AC BD , which gives the required result. 

5. 1 1 1( )− − −⊗ = ⊗A B A B  where A and B are n n×  and m m×  invertible matrices. 

 Proof: From (4), we have 1 1( )( ) n m nm
− −⊗ ⊗ = ⊗ =A B A B I I I . 
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6. ( ) ( ) ( )tr tr tr⊗ =A B A B  where A  and B  are square matrices. 

 Proof: Left as an exercise. 

7. For the square matrices ( )m m×A  and ( )n n×B , we have | | | | | |n m⊗ =A B A B . 

 Proof: Omitted. 

 Remark: We can use eigenvalues to prove this result. Specifically, if Aλ  and Bλ  are eigenvalues of A and B 

respectively, then A Bλ λ  is an eigenvalue of ⊗A B . If Aλ  and Bλ  are eigenvalues of A and B  respectively, 

with associated eigenvectors a  and b , then we have Aλ=Aa a  and Bλ=Bb b . This means that  

( )( ) ( )
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A B
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⊗ ⊗ = ⊗
= ⊗
= ⊗

A B a b Aa Bb
a b

a b
 

 which says that A Bλ λ  is an eigenvalue of ⊗A B . Furthermore, the determinant of a square matrix is the 

product of its eigenvalues. Applying this to the m eigenvalues of A and the n eigenvalues of B completes the 

proof. 

The vec operator 

The vec operator is used to ‘vectorize’ matrices. For any m n×  matrix [ ]1 2( )ij m n na ×= =A a a a , where ia  is 

the ith column of A, 1,2,...,i n= , define ( )vec A  to be the 1mn×  vector 
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Example: if 
1 2 0
3 0 1
 

=  
 

A , then 
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A . 

Properties 

1. ( ) ( ) ( )vec vec vec+ = +A B A B  

 Proof: Left as an exercise. 
 
2. ( ) ( ) ( ) ( ) ( )p mm n n p

vec vec vec
× ×

′= ⊗ = ⊗A B I A B B I A  

 Proof: The columns of the product AB  can be written as 1 2[ ]p=AB A b b b . Therefore, 

1 1

2 2( ) ( ) ( )p

p p
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Ab bA 0 0
Ab b0 A 0

AB I A B

Ab b0 0 A





 

   



. 
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Since [ ]
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3. ( ) ( ) ( )

m n n m
tr vec vec

× ×
′ ′=A B A B  

 Proof: Let ia  denote the ith column of ′A (i.e., the transpose of the ith row of A ).  

Then 
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