Mathematics for Economics: Linear Algebra Anthony Tay 3. Introduction to the Inverse Matrix

The inverse of a square matrix **A** is the matrix, denoted by A^{-1} , such that

$$
\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}.
$$

Example The inverse of the matrix $\mathbf{A} = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$ is

$$
\mathbf{A}^{-1} = \frac{1}{5} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}
$$

since

$$
\mathbf{A}^{-1}\mathbf{A} = \frac{1}{5} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$

One application of matrix inverses is in solving simultaneous equations. Take for example

$$
2x_1 - x_2 = 4
$$

$$
x_1 + 2x_2 = 2
$$

which can be written in matrix form as $Ax = b$ where

$$
\mathbf{A} = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \text{ and } \mathbf{b} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}.
$$

Since we know A^{-1} , we can simply (pre)multiply $A x = b$ with A^{-1} to get

 $A^{-1}Ax = A^{-1}b$.

Since $A^{-1}A = I$, and $Ix = x$, we have $x = A^{-1}b$. This is the solution to the system.

$$
\mathbf{A}^{-1}\mathbf{b} = \frac{1}{5} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}
$$

You can verify on your own that $x_1 = 2$ and $x_2 = 0$ solves the equations.

The formula for the inverse of an arbitrary (2×2) matrix

$$
\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
$$

is

$$
\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} \text{ where } |\mathbf{A}| = a_{11}a_{22} - a_{12}a_{21}.
$$

To show this, multiply the two together:

$$
\frac{1}{|\mathbf{A}|} \begin{bmatrix} a_{22} & -a_{12} \ a_{21} & a_{11} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} a_{11}a_{22} - a_{12}a_{21} & a_{12}a_{22} - a_{12}a_{22} \ a_{11}a_{22} - a_{12}a_{21} \end{bmatrix} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} |\mathbf{A}| & 0 \ 0 & |\mathbf{A}| \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}.
$$

It is worthwhile committing the formula for the inverse of a (2×2) matrix to memory.

The expression $|A|$ is called the 'determinant' of A , something we will discuss in detail in later sections. Note that if $|A| = 0$, then the inverse will not exist (we say that **A** is 'singular'). If the determinant is not zero, the inverse exists, and **A** is said to be 'non-singular'. If **A** is non-singular, the system

 $Ax = b$

will have a unique solution, otherwise it may have many, or none. If $\mathbf{b} = 0$ and **A** is non-singular, the unique solution is the trivial solution $\mathbf{x} = 0$ since $\mathbf{A}\mathbf{x} = 0 \Rightarrow \mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{0} \Rightarrow \mathbf{x} = 0$. For the system $\mathbf{A}\mathbf{x} = 0$ to have non-trivial solutions, it must be that **A** is singular.

Exercises

1. Find the inverse of the following matrices

2. Find the inverse of the matrix

$$
\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}.
$$

Verify by direct multiplication.

3. Make a guess as to the inverse of the $(n \times n)$ matrix

Verify your conjecture by direct multiplication.

- 4. Find the inverse of the matrix $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 0 *b c* $\begin{vmatrix} 0 & b \end{vmatrix}$ $\begin{bmatrix} 0 & 0 \\ c & 0 \end{bmatrix}$.
- 5. Solve the following systems of equations by computing the inverse of the coefficient matrix:
	- (i) $2x_1 \frac{1}{2}x_2$ $1 + 2 \lambda_2$ $2x_1 - x_2 = 4$ $2x_2 = 2$ $x_1 - x$ $x_1 + 2x$ $-x₂ =$ $+ 2x_2 =$ (ii) $\frac{3x_1 + 3x_2}{6}$ $1 + 10x_2$ $3x_1 + 5x_2 = 6$ $6x_1 + 10x_2 = 12$ $x_1 + 5x$ $x_1 + 10x$ $+ 5x_2 =$ $+10x_2 =$ (iii) $5x_1 + 3x_2$ $1 + 10\lambda_2$ $3x_1 + 5x_2 = 6$ $6x_1 + 10x_2 = 10$ $x_1 + 5x$ $x_1 + 10x$ $+ 5x_2 =$ $+10x_2 =$ (iv) $2y - x = 4$ $2x = 2$ $y - x = 4 + a$ $y + 2x$ $-x=4+$ $x + 2x = 2$ (v) $2x_1 - 3x_2$
+ 2x = 2 (v) $x_1 + 2x_2$ $1 + 2 \lambda_2$ $2x_1 - 3x_2 = 0$ $2x_2 = 0$ $x_1 - 3x$ $x_1 + 2x$ $-3x_2 =$ $+ 2x_2 =$ (vi) $\frac{3x_1 + 3x_2}{x_1 + x_2}$ $_1$ + $10x_2$ $3x_1 + 5x_2 = 0$ $6x_1 + 10x_2 = 0$ $x_1 + 5x$ $x_1 + 10x$ $+ 5x, =$ $+10x_2 =$

6. Let
$$
\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$
, $\mathbf{B} = \begin{bmatrix} 2 & 3 \\ 1.5 & 2 \end{bmatrix}$, and $\mathbf{C} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$.

- (i) Show that $AB = AC$.
- (ii) Show that A^{-1} does not exist.

Remark The example in (i) shows that $\mathbf{AB} = \mathbf{AC}$ does not imply that $\mathbf{B} = \mathbf{C}$ in general. However, if \mathbf{A}^{-1} exists, *then it must be that* $\mathbf{B} = \mathbf{C}$ *, since*

$$
AB = AC \implies A^{-1}AB = A^{-1}AC \implies B = C.
$$

- 7. We defined the inverse of **A** as the matrix A^{-1} such that $A^{-1}A = I$. Show that this implies that $AA^{-1} = I$. That is, it doesn't matter whether you premultiplying or postmultiplying **A** with A^{-1} , you still get **I** as a result.
- 8. Let $\mathbf{A} = \begin{vmatrix} a & b \end{vmatrix}$ $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Find the inverse of A^T (assume *a, b, c, d* are such that the inverse exists), and show that $(A^T)^{-1} = (A^{-1})^T$.
- 9. Let **A** be an $(n \times n)$ matrix whose inverse exists. Show that $(A^T)^{-1} = (A^{-1})^T$. (You don't need to know how to compute an $(n \times n)$ for this. Start with the fact that $A^{-1}A = I$ and take transposes.

10. Let
$$
\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
$$
 and $\mathbf{B} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$, and assume that their inverses exist. Show that
\n $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.

11. Let **A** and **B** be $(n \times n)$ matrices whose inverses exist. Show that

$$
(AB)^{-1} = B^{-1}A^{-1}
$$
.

12. Let $A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 2 \end{bmatrix}$ $\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 3 \end{bmatrix}$ and 1 2 2 0 1 1 $\begin{vmatrix} 1 & 2 \end{vmatrix}$ $=\begin{vmatrix} 2 & 0 \end{vmatrix}$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$ **B** = $\begin{pmatrix} 2 & 0 \end{pmatrix}$. Find the inverse of **AB**. Does the relationship $(AB)^{-1} = B^{-1}A^{-1}$ hold for

these two matrices? Why?

13. Is it true that $(A + B)^{-1} = A^{-1} + B^{-1}$? Give a counterexample.