Mathematics for Economics: Linear Algebra Anthony Tay

2. Matrix Algebra: Multiplication

Let **A** be a $(m \times n)$ matrix and **B** be a $(n \times p)$ matrix, i.e., the number of columns of **A** and the number of rows of **B** must be the same. Then product **AB** is defined as the $(m \times p)$ matrix whose $(i, j)^{th}$ element is defined by

$$
\left[\mathbf{AB}\right]_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.
$$

That is, the $(i, j)^{th}$ element of the product **AB** is defined as the sum of the product of the elements of the i^{th} row of **A** with the corresponding elements in the jth column of **B**. For example, the $(1,1)th$ element of **AB** is

$$
[AB]_{1,1} = \sum_{k=1}^{n} a_{1k} b_{k1} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + ... + a_{1n}b_{n1}
$$

The (2,3)th element is

$$
[AB]_{2,3} = \sum_{k=1}^{n} a_{2k} b_{k3} = a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} + \dots + a_{2n}b_{n3}
$$

and so on. Visually, for a product of a (3×3) matrix into a (3×2) matrix, we have

$$
\begin{bmatrix}\n\frac{a_{11}a_{12}a_{13}}{a_{21}a_{22}a_{23}}\n\end{bmatrix}\n\begin{bmatrix}\n\frac{b_{11}b_{12}}{b_{21}b_{22}}\n\end{bmatrix} =\n\begin{bmatrix}\n\frac{a_{11}b_{11}a_{12}b_{12}b_{22}}{a_{21}a_{22}a_{23}}\n\end{bmatrix} =\n\begin{bmatrix}\n\frac{a_{11}a_{12}a_{13}}{a_{21}a_{22}a_{23}}\n\end{bmatrix}\n\begin{bmatrix}\n\frac{b_{11}b_{12}}{b_{21}b_{22}}\n\end{bmatrix} =\n\begin{bmatrix}\n\frac{a_{11}b_{11}a_{12}a_{13}}{a_{21}a_{22}a_{23}}\n\end{bmatrix}\n\begin{bmatrix}\n\frac{b_{11}b_{12}}{b_{21}b_{22}}\n\end{bmatrix} =\n\begin{bmatrix}\n\frac{a_{11}b_{11}a_{12}a_{21}}{a_{21}a_{22}a_{23}}\n\end{bmatrix}\n\begin{bmatrix}\n\frac{b_{11}b_{12}}{b_{21}b_{22}}\n\end{bmatrix} =\n\begin{bmatrix}\n\frac{a_{11}b_{11}a_{12}a_{22}}{a_{21}a_{21}a_{22}a_{23}}\n\end{bmatrix} =\n\begin{bmatrix}\n\frac{a_{11}b_{11}a_{12}a_{22}a_{21}a_{2
$$

Example The simultaneous equations

$$
2x_1 - x_2 = 4
$$

$$
x_1 + 2x_2 = 2
$$

can be written in matrix form as

$$
\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \text{ or } \mathbf{A}\mathbf{x} = \mathbf{b} \text{ where } \mathbf{A} = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \text{ and } \mathbf{b} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}.
$$

Partitioned Matrices

We can extend the matrix multiplication (and addition, subtraction, etc) to partitioned matrices. Given an $(n \times n)$ matrix, we can break it up into blocks of 'submatrices'. For instance, we can write

 \overline{a}

$$
\mathbf{A} = \begin{bmatrix} 1 & 3 & 2 & 6 \\ 2 & 8 & 2 & 1 \\ 3 & 1 & 2 & 4 \\ 4 & 2 & 1 & 3 \\ 3 & 1 & 1 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 & 6 \\ 2 & 8 & 2 & 1 \\ 3 & 1 & 2 & 4 \\ 4 & 2 & 1 & 3 \\ 3 & 1 & 1 & 7 \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{A}_{12} \\ \mathbf{a}_{21} & \mathbf{A}_{22} \end{bmatrix}
$$

where $\mathbf{a}_{11} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{A}_{12} = \begin{bmatrix} 3 & 2 & 6 \\ 8 & 2 & 1 \end{bmatrix}$, $\mathbf{a}_{21} = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix}$, $\mathbf{A}_{22} = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 3 \\ 1 & 1 & 7 \end{bmatrix}$.

There are of course many ways of partitioning the same matrix.

$$
\mathbf{A} = \begin{bmatrix} 1 & 3 & 2 & 6 \\ 2 & 8 & 2 & 1 \\ 3 & 1 & 2 & 4 \\ 4 & 2 & 1 & 3 \\ 3 & 1 & 1 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 & 6 \\ 2 & 8 & 2 & 1 \\ 3 & 1 & 2 & 4 \\ 4 & 2 & 1 & 3 \\ 3 & 1 & 1 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 & 6 \\ 2 & 8 & 2 & 1 \\ 3 & 1 & 2 & 4 \\ 4 & 2 & 1 & 3 \\ 3 & 1 & 1 & 7 \end{bmatrix}.
$$

Addition of Partitioned Matrices Consider two $(n \times m)$ matrices **A** and **B**

$$
\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \frac{\mathbf{A}_{21}}{n_1 \times m_1} & \frac{\mathbf{A}_{12}}{n_2 \times m_2} \\ \mathbf{A}_{22} & \mathbf{A}_{22} \\ \frac{\mathbf{A}_{23}}{n_2 \times m_1} & \frac{\mathbf{A}_{23}}{n_2 \times m_2} \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \frac{\mathbf{B}_{21}}{n_1 \times m_1} & \frac{\mathbf{B}_{12}}{n_2 \times m_2} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \\ \frac{\mathbf{B}_{23}}{n_2 \times m_1} & \frac{\mathbf{B}_{23}}{n_2 \times m_2} \end{bmatrix}
$$

where emphasize that **A** and **B** are of the same size and partitioned in a similar fashion. Then

$$
\mathbf{A} + \mathbf{B} = \begin{bmatrix} \frac{\mathbf{A}_{11} + \mathbf{B}_{11}}{n_1 \times m_1} & \frac{\mathbf{A}_{12} + \mathbf{B}_{12}}{n_1 \times m_2} \\ \frac{\mathbf{A}_{21} + \mathbf{B}_{21}}{n_2 \times m_1} & \frac{\mathbf{A}_{22} + \mathbf{B}_{22}}{n_2 \times m_2} \end{bmatrix}.
$$

Multiplication of Partitioned Matrices Consider two matrices **A** and **B**

$$
\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \frac{\mathbf{A}_{21}}{\mathbf{A}_{21}} & \frac{\mathbf{A}_{22}}{\mathbf{A}_{22}} \\ \frac{\mathbf{A}_{21}}{\mathbf{A}_{2} \times \mathbf{m}_{1}} & \frac{\mathbf{A}_{22}}{\mathbf{A}_{2} \times \mathbf{m}_{2}} \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \frac{\mathbf{A}_{11}}{\mathbf{A}_{11}} & \frac{\mathbf{A}_{12}}{\mathbf{A}_{12}} \\ \frac{\mathbf{B}_{21}}{\mathbf{A}_{2} \times \mathbf{m}_{1}} & \frac{\mathbf{B}_{22}}{\mathbf{A}_{2} \times \mathbf{m}_{2}} \end{bmatrix}
$$

Exercises

1. Find **AB** when

(a)
$$
\mathbf{A} = \begin{bmatrix} 0 & 2 & 0 \\ 3 & 0 & 4 \\ 2 & 3 & 0 \end{bmatrix}
$$
 and $\mathbf{B} = \begin{bmatrix} 8 & 0 \\ 0 & 1 \\ 3 & 5 \end{bmatrix}$ (b) $\mathbf{A} = \begin{bmatrix} 2 & 5 & -1 \\ 1 & 0 & 4 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 4 \\ 5 \\ 1 \end{bmatrix}$
2. Let $\mathbf{A} = \begin{bmatrix} 2 & 8 \\ 3 & 0 \\ 5 & 1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 2 & 0 \\ 3 & 8 \end{bmatrix}$, and $\mathbf{C} = \begin{bmatrix} 7 & 2 \\ 6 & 3 \end{bmatrix}$

(i) Compute **BC** ; (ii) Compute **CB** ; (iii) Can **BA** be computed?

Remark: This exercise shows that for any two matrices A *and* B , $AB \neq BA$. *We distinguish between pre-multiplication and post-multiplication. In the product* **AB***, we say that* **B** *is pre-multiplied by* **A** *, or* **A** *is post-multiplied by* **B** .

3. Let
$$
\mathbf{d} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 2 \end{bmatrix}
$$
 and $\mathbf{f} = \begin{bmatrix} 4 & 2 & 1 & 6 \end{bmatrix}$. Compute (i) $\mathbf{f} \mathbf{d}$ (ii) $\mathbf{d} \mathbf{f}$ (iii) $\mathbf{d}^T \mathbf{d}$.

4. Show that for any vector
$$
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
$$
, the product $\mathbf{x}^T \mathbf{x} \ge 0$. When will $\mathbf{x}^T \mathbf{x} = 0$?

5. (i) Compute $\begin{vmatrix} 2 & 4 \\ 1 & 2 \end{vmatrix}$ -2 4 $1 \quad 2 \parallel 1 \quad -2$ $\begin{bmatrix} 2 & 4 \end{bmatrix}$ $\begin{bmatrix} -2 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 \end{bmatrix}$

(ii) Let
$$
\mathbf{A} = \begin{bmatrix} 1 & b \\ -\frac{1}{b} & -1 \end{bmatrix}
$$
. Compute $\mathbf{A}^2 = \mathbf{A}\mathbf{A} = \begin{bmatrix} 1 & b \\ -\frac{1}{b} & -1 \end{bmatrix} \begin{bmatrix} 1 & b \\ -\frac{1}{b} & -1 \end{bmatrix}$

Remark A matrix with all elements equal zero is called the zero matrix **0**. *Obviously*, $A + 0 = A$ *and* $A0 = 0A = 0$. *Note however that* $AB = 0$ *does not imply* $A = 0$ *or* $B = 0$ *. In fact, the square of a non-zero matrix can be a zero matrix!*

Matrix multiplication therefore does not behave like the usual multiplication of numbers: the order of multiplication is important, and $\bf{AB} = 0$ *does not imply that either* $\bf{A} = 0$ *or* $\bf{B} = 0$ *. Matrix multiplication however does follow associative and distributive laws:*

$$
(AB)C = A(BC)
$$

$$
A(B+C) = AB + AC
$$

$$
(A+B)C = AC + BC
$$

These are easy to prove. For instance, let the dimensions of A, B, and C be $(m \times n)$ *,* $(n \times p)$ *, and* $(p \times q)$ *respectively.* Then **AB** is $(m \times p)$. We have

$$
\begin{aligned}\n\left[\mathbf{(AB)}\mathbf{C}\right]_{ij} &= \sum_{k=1}^{p} \left[\mathbf{AB}\right]_{ik}\left[\mathbf{C}\right]_{kj} = \sum_{k=1}^{p} \left(\sum_{l=1}^{n} \left[\mathbf{A}\right]_{il}\left[\mathbf{B}\right]_{lk}\right)\left[\mathbf{C}\right]_{kj} = \sum_{l=1}^{n} \left[\mathbf{A}\right]_{il}\left(\sum_{k=1}^{p} \left[\mathbf{B}\right]_{lk}\left[\mathbf{C}\right]_{kj}\right) = \sum_{l=1}^{n} \left[\mathbf{A}\right]_{il}\left[\mathbf{BC}\right]_{lj} = \left[\mathbf{A}(\mathbf{BC})\right]_{ij}\n\end{aligned}
$$

(i)
$$
\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix}
$$
 (ii)
$$
\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}
$$

Remark The square matrix

$$
\mathbf{I} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}.
$$

is called the identity matrix. It behaves like the number '1' in regular multiplication: for any matrix A , $AI = IA = A$. *To emphasize the dimension of an identity matrix, we sometimes write* I_n *if it is* $(n \times n)$ *.*

7. Compute

(i)
$$
\begin{bmatrix} b_{11} & 0 & 0 \ 0 & b_{22} & 0 \ 0 & 0 & b_{33} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix}
$$
 (ii)
$$
\begin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} b_{11} \ a_{21} & a_{22} & a_{23} \ b_{2} \end{bmatrix}
$$

(iii)
$$
\begin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} b_{1} \ b_{2} \ b_{3} \end{bmatrix}
$$
 (iv)
$$
\begin{bmatrix} b_{1} & b_{2} & b_{3} & b_{4} \ b_{2} & a_{31} & a_{32} & a_{33} \ a_{41} & a_{42} & a_{43} \end{bmatrix}
$$

8. Show that

$$
\begin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ a_{41} & a_{42} & a_{43} \end{bmatrix} \begin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix} = b_1 \begin{bmatrix} a_{11} \ a_{21} \ a_{31} \ a_{41} \end{bmatrix} + b_2 \begin{bmatrix} a_{12} \ a_{22} \ a_{32} \ a_{42} \end{bmatrix} + b_3 \begin{bmatrix} a_{13} \ a_{23} \ a_{33} \ a_{42} \end{bmatrix}
$$

In other words, **Ab** is a "linear combination" of the columns of **A** , with weights given in **b** .

9. Show that

$$
\begin{bmatrix} b_1 & b_2 & b_3 & b_4 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}
$$

= $b_1 \begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix} + b_2 \begin{bmatrix} a_{21} & a_{22} & a_{23} \end{bmatrix} + b_3 \begin{bmatrix} a_{31} & a_{32} & a_{33} \end{bmatrix} + b_4 \begin{bmatrix} a_{41} & a_{42} & a_{43} \end{bmatrix}$

10. Write the simultaneous equations

$$
4x + z = 4 \n19x + y - 3z = 3 \n7x + y = 1
$$

in matrix notation.

11. For
$$
\mathbf{A} = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{bmatrix}
$$
 and $\mathbf{B} = \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{bmatrix}$, prove that $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$ by multiplying out the matrices.

Remark: This result holds generally. For any $(m \times n)$ *matrix A and any* $(n \times p)$ *matrix B, we have* $(AB)^T = B^T A^T$. The proof is a very good exercise in using the notation we developed earlier. We want to *show that the (i, j)*th *element of* $(AB)^T$ *is equal to the (i, j)*th *element of* $B^T A^T$ *. By the definition of the transpose,* (i, j) th *element of* $(AB)^T$ *is the* (j,i) th *element of* **AB***, therefore*

$$
\begin{aligned}\n\left[(\mathbf{A}\mathbf{B})^{\mathrm{T}} \right]_{ij} &= \left[\mathbf{A}\mathbf{B} \right]_{ji} \\
&= \sum_{k=1}^{n} a_{jk} b_{ki} \\
&= \sum_{k=1}^{n} b_{ki} a_{jk} \\
&= \sum_{k=1}^{n} \left[\mathbf{B}^{\mathrm{T}} \right]_{ik} \left[\mathbf{A}^{\mathrm{T}} \right]_{kj} \\
&= \left[\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \right]_{ij} .\n\end{aligned}
$$

- 12. Prove that $(ABC)^T = C^T B^T A^T$.
- 13. Let **X** be a general $(n \times k)$ matrix. Explain why $X^T X$ is square. Explain why $X^T X$ is symmetric.
- 14. Define the trace of a $(n \times n)$ square matrix **A** to be

$$
trace(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}
$$

That is, the trace of a square matrix is simply the sum of its diagonal elements. Show that

- (i) $trace(A + B) = trace(A) + trace(B)$ (of course, both matrices must be the same size)
- (ii) $trace(A) = trace(A^T)$
- (iii) $trace(AB) = trace(BA)$ (*here* **A** and **B** *need not be of the same size*).

Hint: for the last one, look at the proof given in question 11 and adapt it.