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22.  Constrained Optimization           Anthony Tay 

22.1  Introduction  

Most optimization problems in economics have to account for constraints, e.g.  

(1)      max u(x,y) such that px + y = m 

where x and y are choice variables, representing quantities consumed of two goods, and p and m are 

constants, representing price of x and the available budget m respectively, both in terms of the price of 

good y. The constraint in this example is an equality constraint. Constraints such as  

px + y  ≤  m, and  x ≥ 0  

are called inequality constraints.  

Simple optimization problems with equality constraints can often be recast as unconstrained 

optimization problems. For instance, (1) can be rewritten as  

(1′)      max u(x,m − px) 

In this session, we introduce an alternative method called the Lagrange Multiplier (LM) method for 

constrained optimization. This alternative method is useful because 

(i) in more complicated situations, the substitution method may be inconvenient or 

impossible, 

(ii) the LM method can be extended to handle inequality constraints,  

(iii) for optimization problems in economics, the LM method introduces into each problem 

new quantities (called Lagrange Multipliers) with important economic interpretations; 

and  

The LM method is also used in statistical hypothesis testing (we shall omit this application). 

We will 

-- see what the Lagrange Multiplier method is, 

--  discuss economic interpretations of the Lagrange Multipliers, 

-- explain why the method works  
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22.2   The Lagrange Multiplier Method (two variable, one equality constraint) 

The Problem: 

(2)     max(min) f (x, y) subject to g(x, y) = c. 

where the functions f and g may include parameters. To keep the expressions uncluttered, we do not 

write down these parameters. 

The Lagrange Multiplier Method: 

Step 1. Write down the Lagrangian function, introducing a new variable λ (the Lagrange Multiplier) 

(3)     ( , , ) ( , ) ( ( , ) )x y f x y g x y cλ λ= − −  

Step 2. First Order Conditions: Differentiate (x, y, λ) with respect to x, y, and λ, equate the partial 

derivatives to 0, and solve the equations simultaneously to obtain the stationary points x*, y*, and λ* : 

(3a)   1 1
( , , ) ( , ) ( , ) 0x y f x y g x y

x
λ λ∂ ′ ′= − =

∂
  

(3b)  2 2
( , , ) ( , ) ( , ) 0x y f x y g x y

y
λ λ∂ ′ ′= − =

∂
  

(3c)   ( , , ) ( , ) 0x y g x y cλ
λ

∂
= − + =

∂
  

These will be the possible solutions to the optimization problem. 

Note that the conditions (3a), (3b), and (3c) only give necessary conditions. Further arguments will be 

needed to check if the solutions to these three equations are indeed solutions to the optimization 

problem. 

Example 22.2.1   Maximize xy subject to x + 3y = 24 

Setting up the Lagrangian: ( , , ) ( 3 24)x y xy x yλ λ= − + −  

First-Order Conditions:  ( , , ) 0x y y
x

λ λ∂
= − =

∂
 ,     or y λ=  

   ( , , ) 3 0x y x
y

λ λ∂
= − =

∂
 ,    or 3x λ=  

       ( , , ) 3 24 0x y x yλ
λ

∂
= − − + =

∂
 ,   or 3 24x y+ =  

Combining these equations we have 3 3 24λ λ+ = . Thererfore * 4λ = , * 4y = , and * 12x =  is a possible 

solution to our problem. 
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Example 22.2.2  Maximize/Minimize 3xy subject to x2 + y2 = 8 

Setting up the Lagrangian: 2 2( , , ) 3 ( 8)x y xy x yλ λ= − + −  

First-Order Conditions:  

   ( , , ) 3 2 0x y y x
x

λ λ∂
= − =

∂
     or 3 2y xλ=  

( , , ) 3 2 0x y x y
y

λ λ∂
= − =

∂
     or 3 2x yλ=  

   2 2( , , ) 8 0x y x yλ
λ

∂
= − − + =

∂
    or 2 2 8x y+ =  

Therefore we have 3x  =  2λy  =  2λ 2λx /3  =  4λ 2 x / 3  ⇒  λ 2  =  9/4  ⇒  λ  =  ± 3/2 

When λ = 3/2:  3y = 2λ x   ⇒  y x=  so x2 + y2 = 8  

⇒   2 x2 = 8   ⇒   2x = ± , 2y = ± ;    

When λ = −3/2:  3y = 2λ x   ⇒   y = −x  so x2 + y2 = 8  

⇒   2 x2 = 8   ⇒   2x = ± , 2y =  . 

Possible solutions for (x*, y*) are (2,2), (2, −2), (−2,2) and (−2,−2), and the values of our objective 

function at these points are 12, −12, −12 and 12 respectively.  

 

22.3   Economic Interpretation of the Lagrangian Multiplier  

Given the problem  

max(min) f (x, y) subject to g(x, y) = c, 

the Lagrange Multiplier method tells us how to get the solutions *x  and *y  (and *λ ). Substituting this 

into the objective function gives us the value function * * *( , )f f x y= . It turns out that     
* *df dcλ= , 

so that the optimal value of the Lagrange multiplier tells us the rate at which the value function changes 

with respect to changes in the constraint c.  

Proof: Taking differentials of  * * *( , )f f x y=  gives us 

     
* * * *

* * *
* *

( , ) ( , )f x y f x ydf dx dy
x y

∂ ∂
= +

∂ ∂
 

From the F.O.C:   
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* * * *
*

* *

( , ) ( , )f x y g x y
x x

λ∂ ∂
=

∂ ∂
 and 

* * * *
*

* *

( , ) ( , )f x y g x y
x x

λ∂ ∂
=

∂ ∂
 

so we have 
* * * *

* * * * *
* *

* * * *
* * *

* *

( , ) ( , )

( , ) ( , )

g x y g x ydf dx dy
x y

g x y g x ydx dy
x y

λ λ

λ

∂ ∂
= +

∂ ∂

 ∂ ∂
= + ∂ ∂ 

 

 
The differential of the constraint g(x*, y*) = c is 

* * * *
* *

* *

( , ) ( , )g x y g x ydc dx dy
x y

∂ ∂
= +

∂ ∂
 

Therefore * *df dcλ= . 

Typically, c represents some sort of resource. Because a small change in c leads to an 

approximate change in the value function by *df , *dcλ  represents the value of the additional resouce 

dc. Thus *λ  acts as a price. We call it the shadow price of c . This price is in terms of the units that 

the objective function is measured in. 

For instance, if f is a profit function measured in dollars, and c is a resource constraint, then an 

additional amount dc of the resouces leads to an increase of approximately *df , and the firm would be 

willing to pay up to (approx.) *dcλ  for this additional resource. The additional resource is worth *λ  

per unit. 

Example 22.3.1  The problem  

max such that 2 100xy x y+ =  

gives    * 25x = , * 50y = , so that * * 1250x y = , and * 25λ =  

 

whereas the problem  

max such that 2 101xy x y+ =  

gives    * 25.25x = , * 50.5y = , so that * * 1275.125x y = .   

The actual change in the value of the objective function is 25.125 . The value *λ  calculated in the first 

problem is a linear approximation of this value. 
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22.4   Why the Lagrange Multiplier method works 
 
Example 22.4.1  Maximize xy subject to x + 3y = 24.  
 
Recall that y* = 4, and x* = 12. The maximum value of xy = 48. 

 
 

This is a plot of xy for x∈[5,20], y∈[0,8]. 

Several contour lines are drawn on the x-y 

plane. The straight line on the x-y plane is the 

constraint x + 3y = 24. 
 
 
 
 
 
 

 

Our maximization problem basically asks: what is 

the point along this line that maximizes the 

function xy?  
 
 
 
 
 
 

 
 

At the maximum point, the constraint line should 

be tangent to the contour for f(x, y) at the 

maximum value. If the constraint line intersects a 

contour, then moving along the constraint can 

bring us to a higher value of the objective function.  
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At the tangent point, the slope of the contour is 1 2( , ) ( , )f x y f x y′ ′− , and that of the constraint line is 

1 2( , ) ( , )g x y g x y′ ′− , i.e.,  

1 1

2 2

( , ) ( , )
( , ) ( , )

f x y g x y
f x y g x y

′ ′
=

′ ′
  or  1 2

1 2

( , ) ( , )
( , ) ( , )

f x y f x y
g x y g x y

′ ′
=

′ ′
 

which is what we obtain from the F.O.C. of the Lagrangian function. 

 

There are situations where the Lagrange Multiplier method does not apply: 

Theorem  Suppose that ( , )f x y  and ( , )g x y  have continuous partial derivatives in some domain A  

of the x - y  plane, and that 0 0( , )x y  is both an interior point of A  and a local optimal point for ( , )f x y  

subject to the constraint ( , )g x y c= . Suppose further that 1( , )g x y′  and 2 ( , )g x y′  are not both zero. Then 

there exists a unique number λ  such that the Lagrangian  

( , , ) ( , ) ( ( , ) )x y f x y g x y cλ λ= − −  

has a stationary point at 0 0( , )x y .  [See SH, Section 14.4]. 

 

Suppose 0 0( , )x y  solves the problem  

max ( , )f x y  subject to the constraint ( , )g x y c= . 

Then the theorem tells us that (subject to some conditions holding) 0 0( , )x y  is a stationary point of the 

Lagrangian. However, 0 0( , )x y  might not maximize the Lagrangian.   
 

Example [SH 14.4 Problem No 1]   The point (1,1)  solves the problem  

max xy  subject to 2x y+ =   

with 1λ = . However, (1,1)  does not solve the problem 

max ( , ) 1( 2)x y xy x y= − + −   

since (1,1) (2,2)<  . 

This is fine: the objective is not to maximize the Lagrangian, it is to maximize the function ( , )f x y  

subject to the constraint ( , )g x y c= . But in some situations, the stationary point 0 0( , )x y  in fact 

maximizes the Lagrangian for all ( , )x y . In such cases, and if the constraint is met, then the point 

0 0( , )x y  must also solve the constrained maximization problem. A similar argument holds for 

minimization problems. This leads to the following result: 
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Theorem Suppose the problem is 

max/min ( , )f x y  subject to the constraint ( , )g x y c= . 

and that 0 0( , )x y  is a stationary point of the Lagrangian. If the Lagrangian is concave in x  and y , then 

0 0( , )x y  solves the maximization problem. If the Lagrangian is convex in x  and y , then 0 0( , )x y  solves 

the minimization problem.    

Example max 1/2 1/310x y   subject to 2 4 12x y+ =   

The Lagrangian is  
1/3 1/2max 10 (2 4 10)x y x yλ= − + −   

The FOCs are  

2/3 1/210 2 0
3

x y λ− − = , 1/3 1/25 4 0x y λ− − = , and 2 4 10x y+ = .   

The first two equations lead to 

2/3 1/25
3

x yλ −=  and 1/3 1/25
4

x yλ −= . 

or 3 4x y= , so the budget constraint becomes 5 10x = , or 2x = , 3 / 2y = .   
 

The Lagrangian is concave:  
5/3 1/220 0

9xx x y−= − <  

2/3 1/25
3xy x y− −= , 1/3 3/25

2yy x y−= − , so 

2 4/3 1 4/3 1100 25 0
18 9xx yy xy x y x y− − − −− = − >    

 
so ( , ) (2,3 / 2)x y =  solves the constrained maximization problem.  
 

Local Second Order Conditions    

For the two-variable one-constraint case, let  

2 2( , ) ( )( ) 2( ) ( )( )xx xx y xy xy x y yy yy xD x y f g g f g g g f g gλ λ λ′′ ′′ ′ ′′ ′′ ′ ′ ′′ ′′ ′= − − − + −     

and let 0 0( , )x y  be a stationary point of the Lagrangian, 

(a)  If 0 0( , ) 0D x y < , then 0 0( , )x y  solves the local maximization problem.  

(b)  If 0 0( , ) 0D x y > , then 0 0( , )x y  solves the local minimization problem.  
 
 
The expression ( , )D x y  is more easily remembered as the determinant of the “bordered Hessian”: 
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0 0
( , )

x y x y

x xx xy x xx xx xy xy

y xy yy y xy xy yy yy

g g g g
D x y g g f g f g

g g f g f g
λ λ
λ λ

′′ ′′ ′′ ′′= − = − − −
′′ ′′ ′′ ′′− −

 
 

 

Generalization to more variables in more constraints will utilize this form of the expression. 

Example  Maximize/Minimize 3xy subject to x2 + y2 = 8. Earlier we found that the stationary 

points are (2,2)  and ( 2, 2)− −   with 3 / 2λ = , and (2, 2)−  and ( 2,2)−  with 3 / 2λ = − . 

We have  
2 2

2 2

( , ) ( 2 )(4 ) 2(3)(2 )(2 ) ( 2 )(4 )
8 24 8

D x y y x y x
y xy x
λ λ

λ λ

= − − + −

= − − −
  

At (2, 2)−  and ( 2,2)− , with 3 / 2λ = − , ( , ) 0D x y > , so these are local minimums. 

At (2,2)  and ( 2, 2)− − , with 3 / 2λ = ,  ( , ) 0D x y < , so these are local maximums. 
 

22.5   The Lagrange Multiplier Method (n-variables, m-equality constraints) 

The basic ideas presented here apply to optimization problems involving more than two variables, and 

more than one constraint. Suppose the problem is 

 max / min  1 2( , ,..., )nf x x x   

 subject to  1 1 2 1( , ,..., )ng x x x c= ,  

 …,  

 1 2( , ,..., )m n mg x x x c=  

First, write down the Lagrangian 

1 2 1 2 1 21
( , ,..., ) ( , ,..., ) ( ( , ,..., ) )m

n n j j n jj
x x x f x x x g x x x cλ

=
= − −∑  

and the F.O.C.,  

1 2
1 1 2 1 1 2 1

1

( , ,..., )
( , ,..., ) ( , ,..., ) m j n

n n jj

g x x x
x x x f x x x

x
λ

=

∂′ ′= −
∂∑  

       … 

1 2
1 2 1 2 1

( , ,..., )
( , ,..., ) ( , ,..., ) m j n

n n n n jj
n

g x x x
x x x f x x x

x
λ

=

∂′ ′= −
∂∑  

together with the constraints and solve to get potential optimum points. 
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Example 22.5.1  max/min 2 2 2( , , )f x y z x y z= + +   

st  1( , , ) 2 30g x y z x y z= + + =    and  2 ( , , ) 2 3 10g x y z x y z= − − =  

The Lagrangian is 
2 2 2

1 2( , , ) ( 2 30) (2 3 10)x y z x y z x y z x y zλ λ= + + − + + − − − − −  

The first order conditions are the five equations 

1 1 2( , , ) 2 2 0x y z x λ λ′ = − − =  

2 1 2( , , ) 2 2 0x y z y λ λ′ = − + =  

3 1 2( , , ) 2 3 0x y z z λ λ′ = − + =  

2 30x y z+ + =  

2 3 10x y z− − =  

You can find the solution to be 10x = , 10y = , 0z = , 1 12λ = , and 2 4λ = . 

Second Order Conditions   The conditions for the general n -variable, m -constraints case will be taken 

as optional for this course. These are given to you in the appendix to these notes. 
 

22.6   The Envelope Theorem   

We explicitly allow for other parameters by writing down the problem in the following way.  Let 

1 2( , ,... )kr r r=r  

max (min) ( , , )f x r c  subject to 1 1( , )g c=x r , …, ( , )m mg c=x r  

The Lagrangian is 

 1 1 1 2 2 2( , , ) ( ( , ) ) ( ( , ) ) ... ( ( , ) )m m mf g c g c g cλ λ λ= − − − − − − −x r c x r x r x r  

The solutions are then written as *( , )x r c  and the value function is 

 * *( , ) ( ( , ), , )f f=r c x r c r c . 

The Envelope Theorem (proof omitted) is 

  
* *( , ) ( ( , ), , )

i i

f
r r

∂ ∂
=

∂ ∂
r c x r c r c , for all  i = 1, 2, …, k. 

  
* *( , ) ( ( , ), , )

j j

f
c c

∂ ∂
=

∂ ∂
r c x r c r c , for all  j = 1, 2, …, m. 

Note that the envelope theorem implies that  
* *

*( , ) ( ( , ), , )
j

j j

f
c c

λ∂ ∂
= =

∂ ∂
r c x r c r c . 
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Economic Interpretation of the Lagrange Multiplier:   

As a first application, we consider again the interpretation of the Lagrange Multiplier. Consider 

   max (min) ( , )f x r  subject to 1 1( , )g c=x r , …, ( , )m mg c=x r  

solved to obtain *( , )x r c  and the value function  

f *(r, c) = f (x*(r, c), r, c) = f (x1*(r, c), x2*(r, c), …, xn*(r, c), r, c ) 

The Lagrangian is 

1 1 1 2 2 2( , , ) ( ( , ) ) ( ( , ) ) ... ( ( , ) )m m mf g x r c g x r c g x r cλ λ λ= − − − − − − −x r c    

so that    
* *

*( , ) ( ( , ), , )
i

i i

f
c c

λ∂ ∂
= =

∂ ∂
r c x r c r c  for all i = 1, 2, .., m. 

The differential of *( , )f r c  with respect to c is thus 
* * *

* * * *
1 2 1 1 2 2

1 2

( ) ( ) ( )... ...m m m
m

f f fdf dc dc dc dc dc dc
c c c

λ λ λ∂ ∂ ∂
= + + + = + + +

∂ ∂ ∂
c c c  

which can be used to approximate the change in *f  as a result of a change in c by  

1 2[ ]md dc dc dc=c    

so each change idc  is “valued” at iλ  , i = 1, 2, …, m. 
 

Example 22.6.1   min C  =  rK + wL subject to F(K, L)  =  Q 

 
The Lagrangian is ( , , ) ( ( , ) )r w rK wL F K L Qλ λ= + − −  so that  

 

K
r

∂
=

∂
 , L

w
∂

=
∂
 , and 

Q
λ∂

=
∂
 . 

so that    
*

*( , , , , )C K L r w Q K
r

∂
=

∂
,  

*
*( , , , , )C K L r w Q L

w
∂

=
∂

,  

and   
*

*( , , , , )C K L r w Q
Q

λ∂
=

∂
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Exercises 
 

1.  Using the Lagrange Multiplier Method, find * *( , )x y  that maximizes the function ( , )U x y xy=

subject to the constraint 2x y m+ = . Find also *λ . Use FOC only, as we have showed graphically in 

class that the solution is a global max. Show that  * * * 2( ) ( ( ), ( )) / 8U m U x m y m m= = . What is the 

change in the value of *( )U m  when m  changes from 2m =  to 3m = ? 

Plot *( )U m  and mark out the point on the graph where 2m = . Draw the tangent to the graph 

at the point *(2, (2))U . Consider a change in the value of m  from 2m =  to 3m = . Mark out the distance 

indicating the actual change in the value of *( )U m  when m  changes from 2m =  to 3m = . On the 

same diagram, mark out the linear approximation to the actual change. What is the value of this linear 

approximation to the actual change? 
 

2.  Find the values of x  and y  that maximizes the function 2( , )U x y x y= , such that 3 4 72x y+ =

, 0x ≥ , 0y ≥ . Do this by (a) writing the constraint as 18 3 / 4y x= −  and substituting into ( , )U x y , (b) 

using the Lagrange Multiplier Method.  

In part (b), find also *λ , the value of the Lagrange Multiplier corresponding to the max. pt, and 

also * * *( , )U U x y=  where * *( , )x y  is your solution to the maximization problem.  

Repeat the problem for 2( , )U x y x y= , such that 3 4 73x y+ = , 0x ≥ , 0y ≥ , and find in 

particular *U  in this case. What is the difference between this value of *U  and the value of *U  that 

you found with the constraint 3 4 72x y+ = ? How does this difference compare with *λ  that you found 

earlier? 

 

3.  Find the values of x  and y  that maximizes 1 2 1 2 1( , ) 2 3f x x x x x= +  subject to 1 22 83x x+ = . 

Do this by  (a) substitution, and  

(b) using the Lagrange Multiplier Method.  

In part (b), find also *λ , the value of the Lagrange Multiplier corresponding to the max. pt, and also 

* * *
1 2( , )f f x x=  where * *

1 2( , )x x  is your solution to the maximization problem. What is the (linear) 

approximation to the change in *f  if the constraint is changed to 1 22 84x x+ = ? If the constraint is 

changed to 1 22 85x x+ = ? If the constaint is changed to 1 22 83.2x x+ = ? 
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Repeat the problem with the constraint changed to 1 22 84x x+ = . What is the actual change, and find 

in particular *U  in this case. What is the difference between this value of *U  and the value of *U  

that you found with the constraint 3 4 72x y+ = ? How does this difference compare with *λ  that you 

found earlier? 
 

4.  Solve the utility maximization problem 1/2 1/4( , ) 100u x y x y=  subject to px qy m+ = . Show 

that your Lagrangian function is concave, so your solution is a global maximum. Find * /x p∂ ∂ , 

* /x q∂ ∂ , * /x m∂ ∂ . Find * * *( , )u u x y= . Find * /u p∂ ∂ , * /u q∂ ∂ , * /u m∂ ∂ . 

Find / p∂ ∂ , / q∂ ∂ , and / m∂ ∂ . Evaluate these partial derivatives at the optimum values 

of x  and y . Compare your results with * /u p∂ ∂ , * /u q∂ ∂ , * /u m∂ ∂ . 
 

5.  Solve the maximization problem  

max lnx a y+  subject to px qy m+ =   (assume, 0 /a m p≤ < ) 

Find the function *( , , , )f a p q m  and compute its partial derivatives wrt all four variables. Check if the 

results accord with the envelope theorem.  

Remark: The optimized value of an objective function (i.e. *f , *U , *u  in our previous questions) is 

called the value function. Thus, in the problem max/min ( , )f x y , ( , )f x y  is the objective function, 

* * *( , )f f x y=  is called the value function. 

 

6.  Solve the maximization problem 1/5 2/5 1/5x y z  subject to px qy rz m+ + = . (FOC only.) 

 

7.  Consider the problem 

minimize 2 2x y z+ +  subject to 
2 2 22

1
x xy y z a

x y z
 + + + =


+ + =
     

where a  is a constant. 
 

(a) Use the Lagrange Multiplier method to set up necessary conditions for a minimum. 
 

(b) Find the solution when 5 / 2a =  (You can take it that the minimum exists.) 
 

(c) The minimum value of 2 2x y z+ +  depends on a . Let’s call it ( )V a . What is (5 / 2)V ′ ? 
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8. A theory of demand for money says that an individual will choose M (average money holdings per 

period) and n  (number of withdrawals per period) to minimize the cost of holding money subject to the 

constraint that the individual is able to cover all her expenses over the period.  This can be formalized 

as the problem of choosing M  and n  to  

  minimize nPf iM+  subject to the constraint that 2nM Py=   

where P  are prices, y  is her planned consumption over the next period, f  is a real fixed cost per 

withdrawal, and i  is interest.  (Total expenses for the period is Py .)  All variables are positive. 

(a) Write down the Lagrangian for this problem. 

(b)  Write down the FOC and solve it for the optimal *M  (the “money demand”). 

(c) Show that the SOC for a (local) minimization problem is satisfied. 

(d)  Show that the interest elasticity of money demand, i.e. the (partial) elasticity of *M  with respect 

to i , is equal to 1 / 2− . 

(e) Give an interpretation to the Lagrange Multiplier. 

 

9. A consumer faces the following utility maximization problem 

    
,

max a

x y
x y+    subject to px y m+ = , with 0 1a< <  

(a) Find the demand functions *( , , )x p m a  and *( , , )y p m a , and show using the second-order 

conditions for local optimality that you have a maximum. 

(b) Find the partial derivatives of the demand functions with respect to p  and m  and check their 

signs. 

(c) For the case 1 / 2a = , find an expression for the value function (i.e. the value of the utility 

function at the optimum level of consumption). Denote this by ( , )V p m . Find ( , ) /V p m p∂ ∂  

by differentiating the expression you found and verify that  *( , ) / ( , )V p m p x p m∂ ∂ = − . Again, 

verify this using the Envelope Theorem. 
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10.  Your production function is 1/2 1/2K L . Your cost function is rK wL+ .  

(a) How much K  and L  should you hire if you must produce Q  units at minimum cost? That is, 

find *K  and *L  to minimize 

   rK wL+  subject to 1/2 1/2K L Q=  

 Find also *λ , the value of λ  when producing at the cost minimizing value of K  and L . Give 

an economic interpretation of *λ . 

(b) Find * /C r∂ ∂ , * /C w∂ ∂ , and * /C Q∂ ∂ . Do this two ways: 

i. by substituting *K  and *L  into * * *C rK wL= + , and then differentiating directly;  

ii. using the Envelope Theorem.  
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Appendix  Second Order Conditions 

 
For the general n -variable, m -constaints case, define the “Bordered Hessian” as 
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1
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x x
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 

 

        

 
Define, for 1, 2,...,r m m m n= + + +  
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1
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If *x  is a stationary point, and if 

(a)  ( 1) 0m
rH− >  for 1,...,r m n= +  then *x  is a local minimum; 

(b)  ( 1) 0r
rH− >  for 1,...,r m n= +  then *x  is a local maximum. 

where each of the rH  is evaluated at the point *x . 
 
 
For the 2-variable 1-constraint case   

(x, y, λ)  =  f (x, y) − λ (g(x,y) − c)       

the “Bordered” Hessian works out to be 
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0 0x y x y

x xx xy x xx xx xy xy

y xy yy y xy xy yy yy

g g g g
H g g f g f g

g g f g f g
λ λ
λ λ

   
   ′′ ′′ ′′ ′′= = − −   
   ′′ ′′ ′′ ′′− −   

 
 

     

The second order condition then reduces to checking the sign of 2H  which is the determinant 

2

0 x y

x xx xx xy xy

y xy xy yy yy

g g
H g f g f g

g f g f g
λ λ
λ λ

′′ ′′ ′′ ′′= − −
′′ ′′ ′′ ′′− −

 

If 1
2( 1) 0H− > , or equivalently 2 0H < , then *x  is a local minimum. 

If 2
2( 1) 0H− > , or equivalently 2 0H > , then *x  is a local maximum. 

 
 
Equivalently, let  

2 2( , ) ( )( ) 2( ) ( )( )xx xx y xy xy x y yy yy xD x y f g g f g g g f g gλ λ λ′′ ′′ ′ ′′ ′′ ′ ′ ′′ ′′ ′= − − − + −     

and let 0 0( , )x y  be a stationary point of the Lagrangian, 
 
(a)  If 0 0( , ) 0D x y < , then 0 0( , )x y  solves the local maximization problem.  
(b)  If 0 0( , ) 0D x y > , then 0 0( , )x y  solves the local minimization problem.  
 
 
Example In the 4-variable, 1-constraint case ( 4n = , 1m = ), the Lagrangian is 

1 2 3 4 1 2 3 4 1 2 3 4( , , , ) ( , , , ) ( ( , , , ) )x x x x f x x x x g x x x x cλ= − −     

For the second order condition, we have, 

for *x  to be a local minimum: 
1

2( 1) 0H− > ,  1
3( 1) 0H− > ,  1

4( 1) 0H− > , 

i.e.,  2 0H < ,   3 0H < ,   4 0H < ; 

for *x  to be a local maximum: 
2

2( 1) 0H− > ,  3
3( 1) 0H− > ,  4

4( 1) 0H− > , 

i.e.,  2 0H > ,   3 0H < ,   4 0H > ; 

where  

1 2

2 1 11 12

2 12 22

0 g g
H g

g

′ ′
′ ′′ ′′=
′ ′′ ′′
 
 
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1 2 3

1 11 12 13
3

2 12 22 23

3 13 23 33

0 g g g
g

H
g
g

′ ′ ′
′ ′′ ′′ ′′

=
′ ′′ ′′ ′′
′ ′′ ′′ ′′

  
  
  

,  
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1 2 3 4

1 11 12 13 14

3 2 12 22 23 24

3 13 23 33 34

4 14 24 34 44

0 g g g g
g

H g
g
g

′ ′ ′ ′
′ ′′ ′′ ′′ ′′
′ ′′ ′′ ′′ ′′=
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Example In the 4-variable, 2-constraint case ( 4n = , 2m = ), the Lagrangian is 

1 2 3 4 1 2 3 4 1 1 1 2 3 4 1 2 2 1 2 3 4 2( , , , ) ( , , , ) ( ( , , , ) ) ( ( , , , ) )x x x x f x x x x g x x x x c g x x x x cλ λ= − − − −     
   

For the second order condition, we have, 

for *x  to be a local minimum: 
2

3( 1) 0H− > ,  2
4( 1) 0H− > , i.e.,  3 0H > ,   4 0H > ; 

for *x  to be a local maximum: 
3

3( 1) 0H− > ,  4
4( 1) 0H− > , i.e.,  3 0H < ,   4 0H > ;   

where  

1 1 1 2 1 3

2 1 2 2 2 3

3 1 1 2 1 11 12 13

1 2 2 2 12 22 23

1 3 2 3 13 23 33

0 0 / / /
0 0 / / /
/ /
/ /
/ /

g x g x g x
g x g x g x

H g x g x
g x g x
g x g x

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

′′ ′′ ′′= ∂ ∂ ∂ ∂
′′ ′′ ′′∂ ∂ ∂ ∂
′′ ′′ ′′∂ ∂ ∂ ∂

  
  
  

,  
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.     

 

Exercise Write out the Bordered Hessian for a constrained optimization problem with  

(a)  3 choice variables and 1 constraint 

  (b)  4 choice variables and 3 constraints 
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Example  2 2 2min ( 3) such that  2  and  2 2y z x y z x y z+ − + + = + + =  
 
The Lagrangian is 2 2 2

1 2( 3) ( 2) ( 2 2)y z x y z x y zλ λ= + − − + + − − + + −  
 
The FOCs are 
 

(1) 1 22 0x
x

λ λ∂
= − − =

∂



,  

(2) 1 22( 3) 2 0y z y
y

λ λ∂
= + − − − =

∂



, 

(3) 1 22( 3) 2 0y z
z

λ λ∂
= + − − − =

∂
 ,  

(4) 2

1

2 0x y z
λ
∂

= + + − =
∂
 . 

(5) 2

2

2 2 0x y z
λ
∂

= + + − =
∂
  

 

You would solve these 5 equations for the 5 unknowns in your problem. 

From (2) and (3), get 1y = . 

Substituting 1y =  into (4) and (5), solve to get 1x =  or 1/ 2x = − . 

From (5) , 1y = , 1x = , implies 0z = . 

From (5),  1y = , 1/ 2x = − , implies 3/ 4z = . 

When ( , , ) (1,1,0)x y z = , (1) and (2) implies 1 2( , ) (4 / 3, 8 / 3)λ λ = − . 

When ( , , ) ( 1/ 2,1,3/ 4)x y z = − , (1) and (2) implies 1 2( , ) (5 / 6,5 / 6)λ λ = . 
 
For the second order condition: 2m = , 3n = . We only need to check the sign of  
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2

0 0 2 1 1
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= −
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When ( , , ) (1,1,0)x y z = , and 1 2( , ) (4 / 3, 8 / 3)λ λ = − , this is  
 

3

0 0 2 1 1
0 0 1 2 2

482 1 8 / 3 0 0
1 2 0 22 / 3 2
1 2 0 2 2

H = =−  

 
so 2

3( 1) 0H− >  and 3
3( 1) 0H− < . This is a local minimum.  

 
When ( , , ) ( 1/ 2,1,3/ 4)x y z = − , (1) and (2) implies 1 2( , ) (5 / 6,5 / 6)λ λ = . 

 

3 1

0 0 1 1 1
0 0 1 2 2

151 1 5 / 3 0 0
1 2 0 1/ 3 2
1 2 0 2 2

H

−

= = −− −  

 
so 2

3( 1) 0H− <  and 3
3( 1) 0H− > .  This is a local maximum. 
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