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Mathematics for Economics             Anthony Tay 

21.   Unconstrained Multivariable Optimization 

We begin with unconstrained optimization of functions of two variables, because this is the easiest case, 

and allows us to use geometric intuition to understand the results. 

 

21.1 Definitions Optimal points for functions of two variables are defined similarly to that of 

functions of one variable. Suppose we have ( , )z f x y= : 

− the point 0 0( , )x y  is a global maximum point for f  if 0 0( , ) ( , )f x y f x y≤  for every ( , )x y  in the 

domain of the function. The value 0 0( , )f x y  is called the maximum value of the function.  

− the point 0 0( , )x y  is a strict global maximum point for f  if 0 0( , ) ( , )f x y f x y<  for every ( , )x y  in 

the domain of the function, with 0 0( , ) ( , )x y x y≠ . The value 0 0( , )f x y  is called the strict maximum 

value of f . 

Minimum points are defined in similar fashion. When we do not need to distinguish between minimum 

points and maximum points, we can simply refer to them as optimal points or optima (sometimes also 

“extreme points”), and the corresponding values as optimal values 

As in the univariate case, we can distinguish between global and local optimal points.  

 

The point 0 0( , )x y  is a local maximum point 

for  f  iff 0 0( , ) ( , )f x y f x y≤  for every 

( , )x y  in some circle of radius r  centered at 

0 0( , )x y . It is a local minimum point of the 

function iff 

0 0( , ) ( , )f x y f x y≥  

for every ( , )x y  in some circle of radius r  

centered at 0 0( , )x y . Note that the radius is 

unspecified: all we need is that there be 

some r  (it can be very small) such that 0 0( , )x y  is optimal over a circle of radius r  centered at 0 0( , )x y

. 
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21.2 First and Second Order Conditions   Analogous to the one-variable case, we have 

necessary first-order conditions for optimal points of functions of two variables. In the one variable 

case, we have: 

0x  is an optimal point  ⇒   0( ) 0f x′ =  

That is, the slope of the tangent line should be zero at optimal points. The intuition for this is that if 

0( ) 0f x′ ≠ , then we will be able to attain a higher or lower value for ( )f x  by taking larger or smaller 

values of x .   

For functions of two variables, the intuition is 

similar. We require the directional derivative of the 

function to be zero in all directions. If this were not 

the case, then changing ( , )x y  along that direction 

(or in the opposite direction) will give a higher or 

lower value of ( , )f x y . Put differently, if 0 0( , )x y  is 

an optimum point, then the tangent plane at 0 0( , )x y  

should be zero-sloped in all directions. 
 

The directional derivative in the “h-k” direction is 1 0 0 2 0 0( , ) ( , )hf x y kf x y′ ′+ , and at the optimum point, 

we want this to be zero in all directions, meaning that  

1 0 0 2 0 0( , ) ( , ) 0hf x y kf x y′ ′+ =  

for all possible values of h  and k . Of course, it is impossible to literally check this conditions for each 

and every value of h  and k . Instead, we note that    

1 0 0 2 0 0( , ) ( , ) 0hf x y kf x y′ ′+ =  for all ,h k   ⇔  1 0 0( , ) 0f x y′ =  and  2 0 0( , ) 0f x y′ =  

This should be obvious. If 1 0 0( , ) 0f x y′ =  and 2 0 0( , ) 0f x y′ = , then certainly 1 0 0 2 0 0( , ) ( , ) 0hf x y kf x y′ ′+ =  

for any h  and k . On the other hand, if either 1 0 0( , ) 0f x y′ ≠  or 2 0 0( , ) 0f x y′ ≠ , say 1 0 0( , ) 0f x y′ ≠ , then 

pick 1h =  and 0k = . Therefore: 

Necessary First-Order Condition  Suppose ( , )z f x y=  is differentiable, and 0 0( , )x y  is an interior 

point in the domain. Then 

0 0( , )x y  is an optimal point  ⇒ 1 0 0 2 0 0( , ) ( , ) 0f x y f x y′ ′= = . 
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[We will switch between 1( , )f x y′  and ( , )xf x y′  notations, whichever suits the occasion better. Points 

that satisfy 1 0 0 2 0 0( , ) ( , ) 0f x y f x y′ ′= =  are often called stationary points of f .] 

 

Example 21.2.1  Let 2 2( , ) 5 6 2 8f x y x x y y= − + − + . The stationary points are the points ( , )x y  

such that 

2 6 0xf x′ = − + =   and  4 8 0yf y′ = − + =  

i.e.,  The only candidate optimal point is ( , ) (3,2)x y = . 

 

Example 21.2.2  Let 3 2( , ) 2 5f x y x xy x y= + − − . The candidate points are the points ( , )x y  such 

that 

(i)  23 2 5 0xf x y′ = + − =    and   (ii)  2 2 0yf x y′ = − = . 

Solving we have from (ii) that x y= , so from (i) 

23 2 5 0x x+ − =  ⇒ (3 5)( 1) 0x x+ − =  ⇒ 5 / 3x = −  or 1x = , 

and the candidate optimal points are ( , ) ( 5 / 3, 5 / 3)x y = − −  and ( , ) (1,1)x y = .  
 

Example 21.2.3  Let 2 2( , ) 2f x y x xy y= − + . The stationary points are the points ( , )x y  such that 

2 2 0xf x y′ = − =  and  2 2 0yf x y′ = − + = . 

Therefore, all points ( , )x y  such that x y=  are candidate optimum points. 
 

Example 21.2.4  Suppose a firm has production function ( , )Q F K L= . Suppose the price of the 

product is  p, the price of  K  is  r, and price of  L  is  w.  The firm’s profit function is therefore  

( , ) ( , )K L pF K L rK wLπ = − − . 

Suppose F is differentiable and that π  has a maximum with 0K >  and 0L > , then the necessary 

conditions for this maximum are  

1 1( , ) ( , ) 0K L pF K L rπ ′ ′= − =  ⇒ 1 ( , )pF K L r′ =   

2 2( , ) ( , ) 0K L pF K L wπ ′ ′= − =  ⇒ 2 ( , )pF K L w′ =  

The candidate optimal points are any points ( , )K L  that satisfy the two equations above. We cannot 

solve for the candidate points explicitly; the candidate solutions are only characterized implicitly by the 

two equations. 
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As with functions of one variable, the first 

order conditions are only necessary 

conditions. For functions of one variable, we 

might have inflection points where 

0( ) 0f x′ = . The analogous case for functions 

of two (or more) variables are “saddle points” 

(see figure on the left for an example). 
 

Example 21.2.5  Take 
2 2( , )z f x y x y= = −  

/ 2f x x∂ ∂ =  and / 2f y y∂ ∂ = − , 

so ( , ) (0,0)x y =  is a stationary point of the function. It is clear from its graph of the function, however, 

that this point is neither a maximum point nor a minimum point.  
 

Local Second-Order Conditions  Recall that for functions of one variable ( )f x , we have  

1)  0( ) 0f x′ =  and 0( ) 0f x′′ <  ⇒  f  has a local maximum at 0x x= . 

2)  0( ) 0f x′ =  and 0( ) 0f x′′ >  ⇒  f  has a local minimum at 0x x= . 

3)  0( ) 0f x′ =  and 0( ) 0f x′′ =  ⇒  ? 

The equivalent local second-order conditions for functions of two variables are: 

Second Order Conditions for Local Optima Suppose that 0 0( , )x y  is an interior stationary point of 

a twice-differentiable function ( , )f x y . Then, 

(a)  If 11 0 0( , ) 0f x y′′ <  and 2
11 0 0 22 0 0 12 0 0( , ) ( , ) ( , ) 0f x y f x y f x y′′ ′′ ′′− > , then 0 0( , )x y  is a local max. point;  

(b) If 11 0 0( , ) 0f x y′′ >  and 2
11 0 0 22 0 0 12 0 0( , ) ( , ) ( , ) 0f x y x y f x y′′ ′′ ′′− > , then  0 0( , )x y  is a local min. point; 

(c) If 2
11 0 0 22 0 0 12 0 0( , ) ( , ) ( , ) 0f x y f x y f x y′′ ′′ ′′− < , then 0 0( , )x y  is a saddle point 

(d) If 2
11 0 0 22 0 0 12 0 0( , ) ( , ) ( , ) 0f x y f x y f x y′′ ′′ ′′− = , then ? 

Note that the expression 2
11 0 0 22 0 0 12 0 0( , ) ( , ) ( , )f x y f x y f x y′′ ′′ ′′−  is easy to remember as the determinant of 

the Hessian 

11 12

12 22

f f
f f
′′ ′′ 

 ′′ ′′ 
 

evaluated at the point 0 0( , )x y . 
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We begin with (a): recall that for x0 to be a maximum point of a function of one variable, we needed  

0( ) 0f x′ =  and 0( ) 0f x′′ < .  For 0 0( , )x y  to be a maximum point of a function of two variables, we also 

need the second-order derivative to be less than zero in every direction.  

Let 0 0( ) ( , )g t f x th y tk= + +  for some fixed arbitrary values of h and k not both equal to zero. 

By the chain rule, we have 
2 2

11 0 0 12 0 0 22 0 0(0) ( , ) 2 ( , ) ( , )g f x y h f x y hk f x y k′′ ′′ ′′ ′′= + + . 

This tells us the rate of change of the derivative along the direction ( , )h k . For a maximum point, that 

this second-order derivative has to be less than zero in every direction is therefore saying that (0) 0g′′ <  

for every possible value of  h  and  k  (not both equal zero). 

Sufficient conditions for (0) 0g′′ <  can be derived as follows: write 11 0 0( , )A f x y′′= , 

12 0 0( , )B f x y′′= , and 22 0 0( , )C f x y′′= , so that 

2 2

2 2

2 2
2 2

2

2 2
2

2

(0) 2

2

g Ah Bhk Ck

B CA h hk k
A A

B C BA h k k k
A A A

B CA BA h k k
A A

′′ = + +

 = + + 
 
  = + + −  
   
 − = + +  
   

. 

This expression shows that 0A <  and 2 0CA B− > , then the term in the square brackets is positive for 

all h  and  k , so that (0) 0g′′ < . The result in (b) follows similarly: if 0A >  and 2 0CA B− > , then 

(0) 0g′′ >  for all h  and k . Part (c) is trickier. Suppose 0A >  (the case 0A <  proceeds in a similar 

fashion.) If 2 0CA B− < , then (0) 0g′′ >  when 1, 0h k= = , and (0) 0g′′ <  when h  and k  are chosen 

such that / 0h Bk A+ = .  
We’ll give a counterexample to prove (d).  Suppose  

4 4( , )f x y x y= − − , 4 4( , )g x y x y= + , 3 3( , )h x y x y= + . 

In all three cases, the only stationary point is at (0,0). We also have 

2 2 2
11 22 12 11 22 12 11 22 12 0f f f g g g h h h′′ ′′ ′′ ′′ ′′ ′′− = − = − =  

at the point (0,0) . (Check these assertions on your own at home!) The figures below show that at (0,0), 

f  has a maximum, g a mininum, and h  has a saddle point. 
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Example 21.2.1 (continued)  Let 2 2( , ) 5 6 2 8f x y x x y y= − + − + . The FOCs are 

2 6 0xf x′ = − + =  and  4 8 0yf y′ = − + =  

so the only stationary point is ( , ) (3,2)x y = . The second order partial derivatives are 2xxf ′′ = − , 

4yyf ′′ = − , and 0xy yxf f′′ ′′= = , therefore at the point (3,2)  we have 

2 0xxf ′′ = − <  and  2 ( 2)( 4) 8 0xx yy xyf f f′′ ′′ ′′− = − − = > ,  

The point ( , ) (3,2)x y =  is a local maximum.  

Example 21.2.2 (continued)  Let 3 2( , ) 2 5f x y x xy x y= + − − . The FOCs are  

(i)  23 2 5 0xf x y′ = + − =    and   (ii)  2 2 0yf x y′ = − = , 

and earlier we found the candidate optimal points are ( , ) ( 5 / 3, 5 / 3)x y = − −  and ( , ) (1,1)x y = . The 

second order partial derivatives are 6xxf x′′ = , 2yyf ′′ = − , and 2xy yxf f′′ ′′= = , therefore at the point 

( 5 / 3, 5 / 3)− −  we have  

6( 5 / 3) 10 0xxf ′′ = − = − <    and  2 2( 10)( 2) (2 ) 16 0xx yy xyf f f′′ ′′ ′′− = − − − = > ; 

and at the point (1,1)  we have 

6(1) 6 0xxf ′′ = = <    and    2 2(6)( 2) (2 ) 16 0xx yy xyf f f′′ ′′ ′′− = − − = − < . 

The point ( 5 / 3, 5 / 3)− −  is a local maximum, whereas (1,1) is a saddle point. 

Example 21.2.3 (continued)  Let 2 2( , ) 2f x y x xy y= − + . The FOCs are  

2 2 0xf x y′ = − =  and  2 2 0yf x y′ = − + =  

and  all points ( , )x y  such that x y=  are candidate optimum points. The second order partial derivatives 

are 2xxf ′′ = , 2xyf ′′ = −  and 2yyf ′′ = , so at the stationary points (in fact, at all points), we have  
2( , ) ( , ) ( , ) 0xx yy xyf x y f x y f x y′′ ′′ ′′− = .  

The test is silent on the nature of these points. It should be obvious, nonetheless, that because 

2 2 2( , ) 2 ( )f x y x xy y x y= − + = − , all the stationary points are in fact global minimum points.    

Example 21.2.5 (continued)  Take 2 2( , )z f x y x y= = − . The FOCs are 
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/ 2 0f x x∂ ∂ = =  and / 2 0f y y∂ ∂ = − = , 

so ( , ) (0,0)x y =  is a stationary point of the function. This point is a saddle point. The second order 

derivatives are 2xxf ′′ = , 2yyf ′′ = − , and 0xyf ′′ = , so at the point (0,0) , (and in fact at all points) we have  
2( , ) ( , ) ( , ) 4 0xx yy xyf x y f x y f x y′′ ′′ ′′− = − <      

Example 21.2.6  Let 3 2 4( , ) 3f x y x xy y= − + .  The first order conditions are 

2 23 3 0xf x y′ = − =   

36 4 0yf xy y′ = − + =   

You can show that the stationary points are ( , ) (0,0)x y =  or 3 3
2 2( , )  or 3 3

2 2( , )− .  
 

Exercise:  (a) Find all the second-order derivatives of the function 

3 2 4( , ) 3f x y x xy y= − +  

(b) Show that 3 3
2 2( , )  and 3 3

2 2( , )−  are minimum points, whereas the second order condition is silent over 

the point (0,0). 

In some cases the shape of the function guarantees that the stationary point is either a global 

maximum or a global minimum. For example, consider 2 2( , )f x y x y= − −  (pictured earlier). Functions 

like this are called “concave functions”. For one-variable functions, we used the second derivative to 

characterize concavity and convexity. We can do the same for functions of two variables. For a twice-

differentiable function: 

11( , ) 0f x y′′ < , and 2
11 22 12( , ) ( , ) ( ( , )) 0f x y f x y f x y′′ ′′ ′′− >  for all ,x y   

⇒    f  is a strictly concave function, 

11( , ) 0f x y′′ > , and 2
11 22 12( , ) ( , ) ( ( , )) 0f x y f x y f x y′′ ′′ ′′− >  for all ,x y   

⇒    f  is a strictly convex function, 

11( , ) 0f x y′′ ≤ , 22 ( , ) 0f x y′′ ≤ , and 2
11 22 12( , ) ( , ) ( ( , )) 0f x y f x y f x y′′ ′′ ′′− ≥  for all ,x y   

⇔   f  is a concave function, 

11( , ) 0f x y′′ ≥ , 22 ( , ) 0f x y′′ ≥ , and 2
11 22 12( , ) ( , ) ( ( , )) 0f x y f x y f x y′′ ′′ ′′− ≥  for all ,x y   

⇔   f  is a convex function, 

 
 

In terms of second order conditions, this implies: 
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Second Order Conditions for Global Maximum and Minimum Points  Suppose that 0 0( , )x y  is an 

interior stationary point for a twice-differentiable function ( , )f x y  defined over a convex set. Then if 

for all ( , )x y , 

(a) 11( , ) 0f x y′′ < , and 2
11 22 12( , ) ( , ) ( ( , )) 0f x y f x y f x y′′ ′′ ′′− > , then 0 0( , )x y  is a strict global max point. 

(b) 11( , ) 0f x y′′ > , and 2
11 22 12( , ) ( , ) ( ( , )) 0f x y f x y f x y′′ ′′ ′′− > , then 0 0( , )x y   is a strict global min. point. 

(c)  11( , ) 0f x y′′ ≤ , 22 ( , ) 0f x y′′ ≤ , and 2
11 22 12( , ) ( , ) ( ( , )) 0f x y f x y f x y′′ ′′ ′′− ≥ , then 0 0( , )x y  is a global 

max. point. 

(d) 11( , ) 0f x y′′ ≥ , 22 ( , ) 0f x y′′ ≥ , and 2
11 22 12( , ) ( , ) ( ( , )) 0f x y f x y f x y′′ ′′ ′′− ≥ , then 0 0( , )x y   is a global 

min. point. 
 

Example 21.2.7  Suppose 2 2( , )z f x y x y= = + .  Find the global minimum point. The stationary 

points satisfy   

1( , ) 2 0f x y x′ = =  and 2 ( , ) 2 0f x y y′ = =  

so ( , ) (0,0)x y =  is the only stationary point of the function. We also have 

11( , ) 2f x y′′ = , 22 ( , ) 2f x y′′ = , 12 ( , ) 0f x y′′ = . 

Therefore for all ( , )x y ,   

11( , ) 2 0f x y′′ = > , and 2
11 22 12( , ) ( , ) ( , ) 4 0f x y f x y f x y′′ ′′ ′′− = > , 

so this function is strictly convex, and ( , ) (0,0)x y =  is a strict global minimum point. 
 

Example 21.2.1 (continued)  Let  
2 2( , ) 5 6 2 8f x y x x y y= − + − + . 

Earlier we found the only stationary point to be the point ( , ) (3,2)x y = . We found the second order 

partial derivatives to be 2xxf ′′ = − , 4yyf ′′ = − , and 0xy yxf f′′ ′′= = , therefore at all points ( , )x y  we have 

2 0xxf ′′ = − <   and  2 ( 2)( 4) 8 0xx yy xyf f f′′ ′′ ′′− = − − = > . 

This function is strictly concave, so ( , ) (3,2)x y =  is a strict global maximum point. 

 

 

 

Example 21.2.2 (continued)  Let  
3 2( , ) 2 5f x y x xy x y= + − − .  
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We found earlier that the stationary points are ( , ) ( 5 / 3, 5 / 3)x y = − −  and ( , ) (1,1)x y = . The former is a 

local maximum, the latter is a saddle point. We also found the second order partial derivatives to be 

6xxf x′′ = , 2yyf ′′ = − , and 2xy yxf f′′ ′′= = , so that 

2 12 4xx yy xyf f f x′′ ′′ ′′− = − − . 

This function is not concave or convex throughout its domain. This function is strictly concave only 

over the region where 1/ 3x < − . 

Example 21.2.3 (continued)  Let 2 2( , ) 2f x y x xy y= − + . The stationary points are the points ( , )x y  

such that 

2 2 0xf x y′ = − =  and  2 2 0yf x y′ = − + =  

i.e.,  all points ( , )x y  such that x y=  are candidate optimum points. The second order partial derivatives 

are 2xxf ′′ = , 2xyf ′′ = −  and 2yyf ′′ = , so the functions satisfies 

0xxf ′′ ≥ , 0yyf ′′ ≥  2( , ) ( , ) ( , ) 0xx yy xyf x y f x y f x y′′ ′′ ′′− ≥  for all ,x y  

so the function is convex, but not strictly so [what does it look like?] Because the function is convex, 

all the stationary points are global minimum points. 

Exercise Let 
2 2

( , ) x yf x y e += .  Determine the convexity/concavity of this function. 

 

21.3 Multivariable Optimization: n Variables  Consider now a function 1 2( , ,..., )ny f x x x=  of n

-variables. We have 

Necessary First-Order Condition Suppose 1 2( , ,..., )ny f x x x=  is differentiable, and * * *
1 2( , ,..., )nx x x  is 

an interior point of the domain, then  

  * * *
1 2( , ,..., )nx x x  is an optimum point  ⇒      

* * *
1 2

1 ( , ,..., )

0
nx x x

f
x
∂

=
∂

, 
* * *
1 2

2 ( , ,..., )

0
nx x x

f
x
∂

=
∂

, ..., 
* * *
1 2( , ,..., )

0
n

n x x x

f
x
∂

=
∂

 

 

[I’ve switched notations on you again, 
* * *
1 2

1 ( , ,..., )nx x x

f
x
∂
∂

 refers to the first partial derivative of f  with 

respect to 1x , evaluated at the point  * * *
1 2( , ,..., )nx x x .] 

 
Second Order Conditions  Recall that the second order condition for local optima involved the 
sign of  
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 [ ]

2 2
11 0 0 12 0 0 22 0 0

11 12

12 22

(0) ( , ) 2 ( , ) ( , )

(*)

g f x y h f x y hk f x y k

f f hh k
kf f

′′ ′′ ′′′′ = + +

 ′′ ′′=      ′′ ′′   

 

where ( ) ( ( ), ( ))g t f x t y t= , 0x x th= + , 0y y tk= + . 

The conditions that guarantee a local minimum are conditions that guarantee that this 

expression is greater than zero for all nontrivial h  and k .  The conditions for a local maximum are 

conditions that guarantee that this expression is less than zero for all nontrivial h  and k . 

For instance, for a local minimum in the two variable case, we require  

11 0 0( , ) 0f x y′′ > , and 2
11 0 0 22 0 0 12 0 0( , ) ( , ) ( ( , )) 0f x y f x y f x y′′ ′′ ′′− > , 

This can be written 

11 0f ′′ > , and 11 12

12 22

0
f f

f f

′′ ′′
>

′′ ′′
 

where the partials are all evaluated at the point 0 0( , )x y . 

For a local maximum, we can likewise write the FOC as 

     11 0f ′′ < , and 11 12

12 22

0
f f

f f

′′ ′′
>

′′ ′′
   

where the partials are evaluated at the point 0 0( , )x y . 

Incidentally, matrix expressions such as that in (*) are called quadratic forms. If (*) is strictly 

greater that zero for all nontrivial h  and k  (i.e., not both zero), we say that the quadratic form is positive 

definite. If it is less that zero for all nontrivial h  and k , we say that the quadratic form is negative 

definite. 

The conditions in the n -variable case is the following: for  1 2( , ,..., ) ( )nf x x x f= x , the Hessian 

is 

11 12 1

21 22 2

1 2

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

n

n

n n nn

f f f

f f ff

f f f

 ′′ ′′ ′′
 
 ′′ ′′ ′′

′′ =  
 
 ′′ ′′ ′′  

x x x

x x xx

x x x





   



 

Let  
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1 11H f ′′= , 11 12
2

12 22

f f
H

f f

′′ ′′
=

′′ ′′
, 

11 12 13

3 12 22 23

13 23 33

f f f

H f f f

f f f

′′ ′′ ′′

′′ ′′ ′′=

′′ ′′ ′′

, etc. 

These are called “leading principal minors” of the Hessian matrix. 

Second Order Conditions for Local Optima If at the stationary point 0x , 

1 0H < , 2 0H > , 3 0H < , ..., 
0 if  is even
0 if  is odd

n

n

H n
H n

 >
 <

 

then ( )f x  has a local maximum at 0x ; if at the stationary point 0x  

1 0H > , 2 0H > , 3 0H > , ..., 0nH > , 

then ( )f x  has a local minimum at the stationary point 0x . 
 
Second Order Conditions for Global Optima If for all x , 

1 0H < , 2 0H > , 3 0H < , ..., 
0 if  is even
0 if  is odd

n

n

H n
H n

 >
 <

 

then ( )f x  is strictly concave, and achieves its strict global maximum at the stationary point 0x ; if for 

all x ,  

1 0H > , 2 0H > , 3 0H > , ..., 0nH > , 

then ( )f x  is strictly convex, and achieves its strict global minimum at the stationary point 0x . 

We can rewrite the strict concavity condition as ( 1) | | 0r
rH− >  for 1,...,r n=  . 

Example 21.3.1  Let 2 2 2( , , ) 2 10 3f x y z x x y y z= − + − + − . Then  

2 2xf x′ = − , 10 2yf y′ = − , and 2zf z′ = − ,  

so the only stationary point is ( , , ) (1,5,0)x y z = . Furthermore, the Hessian matrix is   

xx xy xz

xy yy yz

xz yz zz

f f f

f f f

f f f

 ′′ ′′ ′′
 

′′ ′′ ′′ 
 ′′ ′′ ′′  

  =  
2 0 0

0 2 0
0 0 2

− 
 − 
 − 

 

and we have 

2 0xxf ′′ = − < , 
2 0

4 0
0 2

xx xy

xy yy

f f

f f

′′ ′′ −
= = >

′′ ′′ −
, 

2 0 0
0 2 0 8 0
0 0 2

xx xy xz

xy yy yz

xz yz zz

f f f

f f f

f f f

′′ ′′ ′′ −
′′ ′′ ′′ = − = − <

−′′ ′′ ′′

   

for all values of ( , , )x y z .  The function f  is therefore strictly concave, and (1,5,0)  is a strict global 

maximum point. 



Mathematics for Economics 
 

21-12 

The version that allows for possibly non-strict concavity and non-strict convexity is as follows: 

Given an ( )n n×  matrix, 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a
a a a

a a a

 
 
 =
 
 
 

A





   



 

a principal minor of order r , denoted by ( )r∆ A , is the determinant of the ( )r r×  matrix that remains 

when the same n r−  rows and columns are deleted. For instance, for a (3 3)×  matrix 

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 =  
  

A  

The order 1 principal minors are 1 11 22 33( ) , ,a a a∆ =A   

The order 2 principal minors are 22 23 11 13 11 12
2

32 33 31 33 21 22

( ) , ,
a a a a a a
a a a a a a

∆ =A  

The order 3 principal minor is 
11 12 13

3 21 22 23

31 32 33

( )
a a a
a a a
a a a

∆ =A , 

i.e. it is the determinant of the matrix itself. 
 
The leading principal minors of a matrix are thus a subset of the principal minors. 
 
Consider 1 2( , ,..., )nf x x x  , and its Hessian 

11 12 1

21 22 2

1 2

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

n

n

n n nn

f f f

f f ff

f f f

 ′′ ′′ ′′
 
 ′′ ′′ ′′

′′ =  
 
 ′′ ′′ ′′  

x x x

x x xx

x x x





   



 

We have the following: 

f  is convex  ⇔  all ( )( ) 0r f ′′∆ ≥x  for all x , 1,2,...,r n=     

f  is concave  ⇔  all ( )( 1) ( ) 0r
r f ′′− ∆ ≥x  for all x , 1,2,...,r n=     

 
 
Example 21.3.2  Let 2 2 2

1 2 3 1 1 2 2 3( , , ) 6 9 2f x x x x x x x x= − + − − . The Hessian matrix is 
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1 2 3

2 6 0
( , , ) 6 18 0

0 0 4
f x x x

− 
 ′′ = − 
 − 

 . 

The order 1 principal minors are  

1( ) 2 0 , 18 0 , 4 0f ′′∆ = − < − < − <  

The order 2 principal minors are 

 2

18 0 2 0 2 6
( ) 0 , 0 , 0

0 4 0 4 6 18
f

− − −
′′∆ = > > =

− − −
 

The order 3 principal minor is  

3

2 6 0
( ) 6 18 0 0

0 0 4
f

−
′′∆ = − =

−
. 

We have  

all 1( 1) ( ) 0f ′′− ∆ ≥ , all 2
2( 1) ( ) 0f ′′− ∆ ≥ , and all 3

3( 1) ( ) 0f ′′− ∆ ≥ , 

therefore the function is concave. However, the leading principal minors are 

1| | | 2 | 0H = − < , 2

2 6
| | 0

6 18
H

−
= =

−
, and  3

2 6 0
6 18 0 0
0 0 4

H
−

= − =
−

 

they do not meet the requirement for strict concavity. Does this mean that the function is not strictly 

concave? 
 

21.4 The Envelope Theorem    Suppose a firm chooses N  to maximize profit 

( , , ) ( )N P q PF N qNπ = −    

where P and q are prices, and N , the choice variable, is the quantity of an input to be used. Note that 

this is a univariate optimization problem, not a multivariate one. Even though the profit function is 

written as a function of N , p , and q , we are choosing N , taking p  and q  as fixed. To simplify 

matters further, assume 1P = , and ( )F N N= , so  
1/2( , )N q N qNπ = −  

In general, the problem to be solved will depend on a number of parameters. In our simplified example, 

the only parameter is q. Solving this problem for a fixed value of q  we have 

  FOC *N  satisfies 
*

* 1/2(1 / 2) 0
N

N q
N
π −∂

= − =
∂

, or * 2(2 )N q −=  
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  SOC 
2

3/2
2 (1 / 4) 0N

N
π −∂

= − <
∂

 

so * 2(2 )N q −=  maximizes profits. If the firm chooses this optimal level of input, then its profits will 

be  

* * * * 1 1 1( ) ( ( ), )
2 4 4

q N q q N qN
q q q

π π= = − = − = . 

This is the firm’s maximum profits, for any given level of q . It cannot do better. The optimal level *N  

depends on the parameter q , and therefore the maximum profit levels also depend on q .  

In comparative statics, we are interested in two questions: how do the optimal choices change 

when the parameters change, and how the optimal value of the objective function changes when the 

parameter changes. In the context of this example, it is how *N  changes with q , and how *π   changes 

with q . In this example, we can simply take derivatives. We have for *N : 

    ( )
*

3
3

12 2 (2) 0
2

dN q
dq q

−= − = − < ,  

and for *π , take *( ) /d q dqπ , i.e., take  *( ( ), ) /d N q q dqπ : 

       
* *

2
( ) ( ( ), ) 1 0

4
d q d N q q

dq dq q
π π

= = − < .  

(as q  increases, the maximum profit falls, as expected). 

In more general examples, simply taking derivatives might not be feasible. When we use 

general functions, for example, we often find that we cannot solve for the optimal choices explicitly 

(for instance, if we did not specify ( )F N N= , but left it simply as ( )F N . We have spent a 

considerable amount of time developing methods to implicitly differentiate the optimal choices with 

respect to the parameters.  

This section is concerned with a method to simplify (in some cases, make feasible) the 

differentiating of the optimal value of the objective function with respect to the parameters.  

Coming back to our specific example, what we did to get *( ) /d q dqπ  was to substitute the 

optimal solution into the objective function, then differentiate, i.e., we did 

* *( ) / ( ( ), ) /d q dq d N q q dqπ π= . We computed the value function, then differentiated that. Note that 

we would have obtained the same expression for *( ) /d q dqπ  if we had first differentiated the objective 
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(profit) function 1/2( , )N q N qNπ = −  with respect to q , and then evaluated the resulting expression 

at the optimal level of *N . We have 

( , )N q N
q

π∂
= −

∂
.  

Evaluating this expression at *N , we obtain 
*

*
2

( , ) 1
4

N q N
q q

π∂
= − = −

∂
 

That is, 
* *( , ) ( )N q d q

q dq
π π∂

=
∂

. 

This is not a coincidence, but a consequence of the “Envelope Theorem”, and it applies in general. The 

result is perhaps surprising, and worth considering in greater detail. 
 

Applying the chain rule to 
*( ( ), )d N q q

dq
π  gives: 

* *
* *

1 2
( ( ), ) ( ( ), ) ( ( ), )d N q q dN dqN q q N q q

dq dq dq
π π π′ ′= +  

 

There are two effects: even if I were to hold my optimal choice fixed at the pre-change value of q , 

when q  changes I should expect my profit levels to change (this is the second term). But because my 

optimal choice depends on q , when q  changes, my optimal choice changes, which should then also 

change profits (this is the first term). 

However, we know that */ Nπ∂ ∂ , i.e., the derivative of π  evaluated at the optimum, is zero. 

Therefore the first term is zero, and we have  

*
*

2
( ( ), ) ( ( ), )d N q q N q q

dq
π π ′=  

What happens is this: because / 0Nπ∂ ∂ =  at the optimum *N , the effect of a change in *N  on π  

becomes negligible as we consider smaller changes in q . In the limit, we can ignore this ‘indirect’ 

effect, and we only need to compute the direct effect of the parameter of the objective function. 

 

The envelope theorem is very useful in that it can greatly simplify the computation of the 

derivative of the value function. Sometimes, there is no other way except to appeal to the envelop 

theorem. If our problem was to  
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max ( , , ) ( )N P q PF N qNπ = −  

 

where ( )F N  was not specified, then we cannot explicitly solve for *N . If we cannot solve for *N  

explicitly, we cannot substitute it into the objective function to get an explicit value function to 

differentiate. However, with the envelope theorem (and if the requisite assumptions for the existence of 

a solution are met), we can still say that   

* *
*( ) ( , )d q N q N

dq q
π π∂

= = −
∂

. 

 
[Incidentally] why is the Envelope Theorem called the Envelope Theorem? 
 
… because of a neat geometric feature of the value function. Consider the example 

2 2min ( , )x f x a x ax a= − +  

[Note that I put ( , )f x a  to emphasize the presence of the parameter, and because I want later to differentiate with 

respect to a . The notation “ max x ” means maximize with respect to x . As far as the maximization problem is 

concerned, the problem is exactly the same as if I had written 2 2max ( )f x x ax a= − + ] 
 
The FOC is  / 2 0x x aπ∂ ∂ = − =  so the solution is * / 2x a= . 
 
The SOC is  2 2/ 2 0xπ∂ ∂ = >  so *x  is a global minimum point. 
 
The minimum value of the function is then  
 

* 2 2 2( ( ), ) ( / 2) ( / 2) 3 / 4f x a a a a a a a= − + = . 
 
As noted before, this is called the ‘value function’, and we write * *( ) ( ( ), )f a f x a a= . 

The envelope theorem says that * *( ) / ( ( ), ) /df a da f x a a a= ∂ ∂ . In words, the slope of the value 

function (wrt a ) is the same as the slope of the partial derivative of the objective function ( , )f x a  wrt 

a , evaluated at the maximum *( )x x a= . 

 

 

In the following diagram, I plot *( )f a  as well as ( , )f x a  for three values of x  (-1, 0, and 1). 

The envelope theorem is so named because the value function *( )f a  (bold line) ‘envelopes’ ( , )f x a  

for any given value of x  (three are shown, as thin lines -- red, blue, and green if reading in color -- 

corresponding to 1x = − , 0x =  and 1x = ). 
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Note that when 0a = , * 0x = . The 

envelope theorem says that the slope of the 

value function (bold line) at 0a =  is the 

same as the slope of the objective function 

( , )f x a  wrt a  (thin line) when 

* 0x x= = .  
 

Similar statements can be made for the 

cases 2a =  ( * 1x = ) , 2a = −  ( * 1x = − ),  

and so on 
 

The envelope theorem can be stated for the general multivariable optimization problem: Suppose we 

have 

     Maximize 1 1( ,..., , ,..., )n kf x x p p   

where the x ’s are the choice variables.  

We carry out the maximization, and get *
1 1( ,..., )kx p p , …, *

1( ,..., )n kx p p  as our solution.  Putting the 

*x ’s into our objective function gives the value function  
* * *

1 1 1 1 1( ,..., ) ( ( ,..., ),..., ( ,..., ), ,..., )k k n k kf p p f x p p x p p p p=  

The envelope theorem states that  

* * *
1 2

*
1 1 1 1 1

, ,...,

( ,..., ) ( ( ,..., ),..., ( ,..., ), ,..., )

n

k k n k k

i i x x x

f p p f x p p x p p p p
p p

∂ ∂
=

∂ ∂
. 

 

Example 21.4.1  Let the production function be ( , )Q F K L= , Q is output, K is capital input, L is 

labor input. Price per unit of Q is p, price per unit of K is r, price per unit of L is w.  

 

Suppose that all the assumptions are made that ensure that a profit maximizing solution exists, and let 

the solutions be *K  and *L  . We want to see how  

* * *( , , ) ( , , , , )p w r K L p w rπ π=  

0

4

8

12

16

20

-6 -4 -2 0 2 4 6

f*(a)

f(-1,a)

f(0,a)

f(1,a)

a
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changes with p , w  , and r  (i.e. how does the firms maximized profits change with prices of the good 

or of the factors change). Of course, we will also be interested in how *K  and *L  changes with prices 

p , w  , and r , but we focus on profits in this example).  

Profit function is ( , , , , ) ( , )K L p r w pF K L rK wLπ = − − , which gives  

( , , , , ) ( , )K L p r w F K L
p

π∂
=

∂
,  

( , , , , )K L p r w K
r

π∂
= −

∂
,  

( , , , , )K L p r w L
w

π∂
= −

∂
,  

The envelope theorem then tells us that 

*
* * *( , , ) ( , )p r w F K L Q

p
π∂

= =
∂

, 

     
*

*( , , )p r w K
r

π∂
= −

∂
,  

*
*( , , )p r w L

w
π∂

= −
∂

. 

Note that we didn’t make any assumptions about ( , )F K L  (except to assume that there is a solution to 

the maximization problem.) Notice also that didn’t even solve the optimization problem, and yet we 

can say something sensible about how maximized profits change with prices. 
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Exercises 
 
1. For each of the following functions, find and characterize all optima points  
 

(a)  2 2( , ) ( 2) ( 1)f x y x y= − + +  
 

(b)  2 2( , ) 1f x y x y= − −  
 

(c)  ( , ) xyf x y e=  
 

(d)  3 3( , )f x y xy x y= − −  

 

2. Let 2( , ) ln(1 )f x y x y= + , with x∈  and 0y > . Find all the stationary points of ( , )f x y  and characterize 

them (max or min or saddle, local or global). 

 
3. The function  

     2 2( , , ) 100 2 3 x y zf x y z x y z xy e + += − − − − + . 

has one stationary point. Find it, and show that it is a global maximum point.  
 

4.   Show that the function 3 2 2( , ) (1 )f x y y x y= + +  has a local minimum at ( , ) (0,0)x y = , but that it 

has no global minimum. 
 
The goal of the next five questions is to help you understand the Envelope Theorem. The optimization 
problems here are all optimization of functions of one variable. 
 

5. a. Let ( ) 1/f x x x= + , 0x > . What is the value of x , *x , that minimizes ( )f x ?  What is 

the value of ( )f x  at *x ? 

 b. Let ( ) 2 1/f x x x= + , 0x > . What is the value of x , *x , that minimizes ( )f x ?  What is 

the value of ( )f x  at *x ? 

 c. Let ( , ) 1/f x b bx x= + , 0x > , and where b  is a positive constant. What is the value of x , 

*x , that minimizes ( )f x  for any given b ?  What is ( , )f x b  at *x ? 

(Comment: The answer to the first question in part (c) should be a function of b , that is, * *( )x x b=

. The answer to the second question in part (c) should also be a function of b , in particular, you are 

finding *( ( ), )f x b b . The function * *( ) ( ( ), )f b f x b b=  is called the value function).  
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d. Evaluate *( )x b  and *( )f b  at 1b =  and at 2b = . Verify that you get the same answers as in 

parts (a) and (b) respectively. 

 e. Compute 
*dx

db
 and 

*df
db

. Interpret your results 

 f. Given ( , ) 1/f x b bx x= + , find /f b∂ ∂ . Evaluate this partial derivative at *( )x x b= , i.e, find 

*
2 ( ( ), )f x b b′ . Verify that * *

2 ( ( ), ) /f x b b df db′ = . 
 
6. Let 2 1/ 2( , ) (100 )f x p x px= − .  
 

a. Find *x  such that *x  maximizes ( , )f x p  for any given 0p > .  
  
 b. Find * /dx dp . Interpret this derivative. 
 

c. Find * *( ) ( ( ), )f p f x p p= . Find * /df dp . Interpret this derivative. 
 

d. Find ( , ) /f x p p∂ ∂ . Evaluate this derivative at *( )x x p= . Verify that you get the same 

expression as in part (c). Explain why this is the case, by differentiating *( ( ), )f x p p  using 

the chain rule. 

e. Draw on the same figure the functions *( )f p , and ( , )f x p  for x = 50, 12.5, 5. (This is done 

for you below).  

 
Note that * 50x =  when 1p = , * 12.5x =  when 4p = , * 5x =  when 10p = . 

1 2 4 6 8 10 12 14
10

20

30

40

50

60

70

80

p

f*(p) = 50/sqrt(p)

f(50,p)

f(12.5,p)

f(5,p)
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7. A farmer has the production function Y N= , 0N > , where N  is the amount of fertilizer put into 

the production process, and Y  is the farmer’s output. Fertilizer costs 1 dollar per pound, and each unit 

of output fetches a price of p  dollars. Given p , the farmer chooses N  to maximize profit 

         ( , )N q p N Nπ = − . 

(a) Find the profit maximizing level of N , *( )N p . Find the value function * *( ) ( ( ), )p N p pπ π= . How 

much fertilizer should the farmer use if 4p = ? If 8p = ? What is the farmer’s profit when 4p =  and 

when 8p = , assuming the farmer maximizes profits? 
 
(b) Find *( ) /d p dpπ . 

 

(c) Find ( , ) /N p pπ∂ ∂ . Evaluate this derivative at *( )N N p= . Compare this derivative with the 

derivative in part (b). 

 

8. A farmer has the production function Y N= , 0N > , where N  is the amount of fertilizer put 

into the production process, and Y  is output. Fertilizer costs q  dollar per pound, and each unit of 

output fetches a price of p  dollars. Given p  and q , the farmer chooses N  to maximize profit 

         ( , , )N p q p N qNπ = − . 

(a) Find the profit maximizing level of N , *( , )N p q . Find the value function 

* *( , ) ( ( , ), , )p q N p q p qπ π= . 

How much fertilizer should the farmer use if 4p =  and 1q = ? If 8p =  and 1q = ? If 8p =  and 

2q = ? What are the farmer’s profits at those values of p  and q , assuming the farmer maximizes 

profits? 

(b) Find *( , ) /p q pπ∂ ∂  and *( , ) /p q qπ∂ ∂ . 

(c) Find ( , , ) /N p q pπ∂ ∂  and ( , , ) /N p q qπ∂ ∂ . Evaluate these derivatives at *( , )N N p q= . Compare 

these derivatives with the derivatives obtained in part (b). 
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9. A farmer has the production function ( )Y f N= , 0N > , ( ) 0f N′ > , and ( ) 0f N′′ < , where N  is 

the amount of fertilizer put into the production process, and Y  is the farmer’s output. Fertilizer costs 

q  dollar per pound, and each unit of output fetches a price of p  dollars. Given p  and w , the farmer 

chooses N  to maximize profits 

        ( , , ) ( )N p q pf N qNπ = − . 

 

a. Show that the profit maximizing choice of N , *( , )N p q  satisfies the condition 
*( ( , )) qf N p q

p
′ =  

 
b. Determine the sign of * /N p∂ ∂  and * /N q∂ ∂ .  
 
c. Find *( , ) /p q pπ∂ ∂  and *( , ) /p q qπ∂ ∂  in terms of *N . 
 

10. Let ( , )f x y  be such that 0xf ′ > , 0yf ′ > , 0xxf ′′ < , 0yyf ′′ < , and 2 0xx yy xyf f f′′ ′′ ′′− > . Consider the 

problem 

1 2max ( , ) ( , )x y p f x y q x q yπ = − −  

where 1 2, ,p q q  are all positive. Let *
1 2( , , )x p q q  and *

1 2( , , )y p q q  be the stationary points of the 

function ( , )x yπ . 

(a) Explain why the stationary points of the function solve the maximization problem (show that the 

SOC for maximization is satisfied). 

(b)  Find *
1/x q∂ ∂  and *

1/y q∂ ∂ . Show that given our assumptions, that the former is negative, but the 

sign of the latter cannot be determined (what does it depend on?). 

A function ( , )g x y  is said to be homogenous of degree k  if ( , ) ( , )kg tx ty t g x y=  for any 0t > . 

(c) Show that if ( , )g x y  is homogenous of degree k , then  

1 2( , ) ( , ) ( , )xg x y yg x y kg x y′ ′+ =  

(d) Show that both *
1 2( , , )x p q q  and *

1 2( , , )y p q q  are homogenous of degree zero, i.e., show that 

for any 0t > , 

  * *
1 2 1 2( , , ) ( , , )x tp tq tq x p q q=    and    * *

1 2 1 2( , , ) ( , , )y tp tq tq y p q q= . 

(e) Is the value function *
1 2( , , )p q qπ  also homogenous? If so, to what degree? 

(f) Find 
*

p
π∂
∂

, 
*

1q
π∂
∂

, and 
*

2q
π∂
∂

. Use the latter two expressions to show that 
* *

2 1

x y
q q
∂ ∂

=
∂ ∂

. 
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11.  Suppose a firm chooses 1x  and 2x  to maximize  

1 2 1 1 2 2( , )pf x x w x w xπ = − − , where 1 20, 0, 0p w w> > > , 1 0x > , 2 0x > . 

Assume that 1 2( , ) 0f x x > , 1 0f ′ > , 2 0f ′ > , 11 0f ′′ < , 22 0f ′′ < , ( )211 22 12 0f f f′′ ′′ ′′− >  for all 1 2,x x .  Let 

the optimum solution to this maximization problem be *
1x  and *

2x .  

(i) Write down the first order conditions for this problem. Are the second order conditions for a 

global maximum satisfied? 

(ii)  Show that the derivatives of *
1x  and *

2x  with respect to p  satisfies 

    

* *
1 2

11 12 1

* *
1 2

21 22 2

x xpf pf f
p p

x xpf pf f
p p

∂ ∂′′ ′′ ′+ = −
∂ ∂

∂ ∂′′ ′′ ′+ = −
∂ ∂

 

  Write this system of equations in matrix form. 

(iii) Solve the equations in (ii) using Cramer’s rule to obtain expressions for  

*
1x
p

∂
∂

 and 
*
2x
p

∂
∂

. 

Explain why their signs depend on the value of 12f ′′ . 

 (iv)  Let * * *
1 2 1 2 1 2( , , ) ( , , , , )p w w x x p w wπ π= . What are the signs of * / pπ∂ ∂  and *

1/ wπ∂ ∂ ?    
 

12.  Suppose a firm is able to choose the price P  of his product. Furthermore, the firm can 

influence the demand for its product by spending A  on advertising. Suppose demand for the product 

is  
( )Q P Aβα= − , with 0α > , 0 1β< < . 

(i) Find the elasticity of demand Q  with respect to A . 

Suppose that the cost of producing one unit of the good is c . (We will assume that c α< .) The profit 

function of the firm is therefore  

( )( )P c P A Aβπ α= − − − . 

(ii)  Find *A  and *P  (the profit maximizing levels of A  and P ) and show that the second-order 

condition for local minimum is satisfied at this solution. 

(iii)  Find the derivatives of *A , *P , and  *π  with respect to β .  
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13(a)  Show that the function 
2 3 6( , ) 6 4y yf x y x e x e= − −  

has only one stationary point, and that this stationary point is a local maximum, but not a global 

maximum. 

(b) Find and classify the stationary points of the function  

2 2( , , ) 2 4 2f x y z x y y z z x= + − − . 

(c) Find and classify all the stationary points of the function 

2 2 2( , , ) 5 5 9 6 12f x y z x y z xz yz= + + − − . 
 
14.  Find the stationary points of   

2( , ) ( ) yf x y x axy e= −  

and classify them. Let * *( , )x y  be a stationary point of ( , )f x y  and let * * *( ) ( , )f a f x y= . Find 

*( ) /df a da  by  

(i) differentiating  * *( , )f x y  directly (i.e. without using the Envelope Theorem) and  

(ii) using the Envelope Theorem. 

 


	We begin with unconstrained optimization of functions of two variables, because this is the easiest case, and allows us to use geometric intuition to understand the results.
	21.1 Definitions Optimal points for functions of two variables are defined similarly to that of functions of one variable. Suppose we have :
	( the point  is a global maximum point for  if  for every  in the domain of the function. The value  is called the maximum value of the function.
	( the point  is a strict global maximum point for  if  for every  in the domain of the function, with . The value  is called the strict maximum value of .
	Minimum points are defined in similar fashion. When we do not need to distinguish between minimum points and maximum points, we can simply refer to them as optimal points or optima (sometimes also “extreme points”), and the corresponding values as opt...
	As in the univariate case, we can distinguish between global and local optimal points.
	The point  is a local maximum point for  f  iff  for every  in some circle of radius  centered at . It is a local minimum point of the function iff
	for every  in some circle of radius  centered at . Note that the radius is unspecified: all we need is that there be some  (it can be very small) such that  is optimal over a circle of radius  centered at .
	21.2 First and Second Order Conditions   Analogous to the one-variable case, we have necessary first-order conditions for optimal points of functions of two variables. In the one variable case, we have:
	is an optimal point
	That is, the slope of the tangent line should be zero at optimal points. The intuition for this is that if , then we will be able to attain a higher or lower value for  by taking larger or smaller values of .
	For functions of two variables, the intuition is similar. We require the directional derivative of the function to be zero in all directions. If this were not the case, then changing  along that direction (or in the opposite direction) will give a hig...
	The directional derivative in the “h-k” direction is , and at the optimum point, we want this to be zero in all directions, meaning that
	for all possible values of  and . Of course, it is impossible to literally check this conditions for each and every value of  and . Instead, we note that
	for all     and
	This should be obvious. If  and , then certainly  for any  and . On the other hand, if either  or , say , then pick  and . Therefore:
	Necessary First-Order Condition  Suppose  is differentiable, and  is an interior point in the domain. Then
	is an optimal point  ( .
	[We will switch between  and  notations, whichever suits the occasion better. Points that satisfy  are often called stationary points of .]
	Example 21.2.1  Let . The stationary points are the points  such that
	and
	i.e.,  The only candidate optimal point is .
	Example 21.2.2  Let . The candidate points are the points  such that
	(i)     and   (ii)  .
	Solving we have from (ii) that , so from (i)
	(  (  or ,
	and the candidate optimal points are  and .
	Example 21.2.3  Let . The stationary points are the points  such that
	and  .
	Therefore, all points  such that  are candidate optimum points.
	Example 21.2.4  Suppose a firm has production function . Suppose the price of the product is  p, the price of  K  is  r, and price of  L  is  w.  The firm’s profit function is therefore
	.
	Suppose F is differentiable and that  has a maximum with  and , then the necessary conditions for this maximum are
	(
	(
	The candidate optimal points are any points  that satisfy the two equations above. We cannot solve for the candidate points explicitly; the candidate solutions are only characterized implicitly by the two equations.
	As with functions of one variable, the first order conditions are only necessary conditions. For functions of one variable, we might have inflection points where . The analogous case for functions of two (or more) variables are “saddle points” (see fi...
	Example 21.2.5  Take
	and ,
	so  is a stationary point of the function. It is clear from its graph of the function, however, that this point is neither a maximum point nor a minimum point.
	Local Second-Order Conditions  Recall that for functions of one variable , we have
	1)   and  (   has a local maximum at .
	2)   and  (   has a local minimum at .
	3)   and  (  ?
	The equivalent local second-order conditions for functions of two variables are:
	Second Order Conditions for Local Optima Suppose that  is an interior stationary point of a twice-differentiable function . Then,
	(a)  If  and , then  is a local max. point;
	(b) If  and , then   is a local min. point;
	(c) If , then  is a saddle point
	(d) If , then ?
	Note that the expression  is easy to remember as the determinant of the Hessian
	evaluated at the point .
	We begin with (a): recall that for x0 to be a maximum point of a function of one variable, we needed   and .  For  to be a maximum point of a function of two variables, we also need the second-order derivative to be less than zero in every direction.
	Let  for some fixed arbitrary values of h and k not both equal to zero. By the chain rule, we have
	.
	This tells us the rate of change of the derivative along the direction . For a maximum point, that this second-order derivative has to be less than zero in every direction is therefore saying that  for every possible value of   and   (not both equal z...
	Sufficient conditions for  can be derived as follows: write , , and , so that
	.
	This expression shows that  and , then the term in the square brackets is positive for all  and  , so that . The result in (b) follows similarly: if  and , then  for all  and . Part (c) is trickier. Suppose  (the case
	We’ll give a counterexample to prove (d).  Suppose
	, , .
	In all three cases, the only stationary point is at (0,0). We also have
	at the point. (Check these assertions on your own at home!) The figures below show that at (0,0),  has a maximum, a mininum, and  has a saddle point.
	Example 21.2.1 (continued)  Let . The FOCs are
	and
	so the only stationary point is . The second order partial derivatives are , , and , therefore at the point  we have
	and  ,
	The point  is a local maximum.
	Example 21.2.2 (continued)  Let . The FOCs are
	(i)     and   (ii)  ,
	and earlier we found the candidate optimal points are  and . The second order partial derivatives are , , and , therefore at the point  we have
	and  ;
	and at the point  we have
	and    .
	The point  is a local maximum, whereas (1,1) is a saddle point.
	Example 21.2.3 (continued)  Let . The FOCs are
	and
	and  all points  such that  are candidate optimum points. The second order partial derivatives are ,  and , so at the stationary points (in fact, at all points), we have
	.
	The test is silent on the nature of these points. It should be obvious, nonetheless, that because , all the stationary points are in fact global minimum points.
	Example 21.2.5 (continued)  Take . The FOCs are
	and ,
	so  is a stationary point of the function. This point is a saddle point. The second order derivatives are , , and , so at the point , (and in fact at all points) we have
	Example 21.2.6  Let .  The first order conditions are
	You can show that the stationary points are  or  or .
	Exercise:  (a) Find all the second-order derivatives of the function
	(b) Show that  and  are minimum points, whereas the second order condition is silent over the point (0,0).
	In some cases the shape of the function guarantees that the stationary point is either a global maximum or a global minimum. For example, consider  (pictured earlier). Functions like this are called “concave functions”. For one-variable functions, we ...
	, and  for all
	f  is a strictly concave function,
	, and  for all
	f  is a strictly convex function,
	, , and  for all
	f  is a concave function,
	, , and  for all
	f  is a convex function,
	In terms of second order conditions, this implies:
	Second Order Conditions for Global Maximum and Minimum Points  Suppose that  is an interior stationary point for a twice-differentiable function  defined over a convex set. Then if for all ,
	(a) , and , then  is a strict global max point.
	(b) , and , then   is a strict global min. point.
	(c)  , , and , then  is a global max. point.
	(d) , , and , then   is a global min. point.
	Example 21.2.7  Suppose .  Find the global minimum point. The stationary points satisfy
	and
	so  is the only stationary point of the function. We also have
	, , .
	Therefore for all ,
	, and ,
	so this function is strictly convex, and  is a strict global minimum point.
	Example 21.2.1 (continued)  Let
	.
	Earlier we found the only stationary point to be the point . We found the second order partial derivatives to be , , and , therefore at all points  we have
	and  .
	This function is strictly concave, so  is a strict global maximum point.
	Example 21.2.2 (continued)  Let
	.
	We found earlier that the stationary points are  and . The former is a local maximum, the latter is a saddle point. We also found the second order partial derivatives to be , , and , so that
	.
	This function is not concave or convex throughout its domain. This function is strictly concave only over the region where .
	Example 21.2.3 (continued)  Let . The stationary points are the points  such that
	and
	i.e.,  all points  such that  are candidate optimum points. The second order partial derivatives are ,  and , so the functions satisfies
	,   for all
	so the function is convex, but not strictly so [what does it look like?] Because the function is convex, all the stationary points are global minimum points.
	Exercise Let .  Determine the convexity/concavity of this function.
	21.3 Multivariable Optimization: n Variables  Consider now a function  of -variables. We have
	Necessary First-Order Condition Suppose  is differentiable, and  is an interior point of the domain, then
	is an optimum point
	, , ...,
	[I’ve switched notations on you again,  refers to the first partial derivative of  with respect to , evaluated at the point  .]
	Second Order Conditions  Recall that the second order condition for local optima involved the sign of
	where , , .
	The conditions that guarantee a local minimum are conditions that guarantee that this expression is greater than zero for all nontrivial  and .  The conditions for a local maximum are conditions that guarantee that this expression is less than zero fo...
	For instance, for a local minimum in the two variable case, we require
	, and ,
	This can be written
	, and
	where the partials are all evaluated at the point .
	For a local maximum, we can likewise write the FOC as
	, and
	where the partials are evaluated at the point .
	Incidentally, matrix expressions such as that in (*) are called quadratic forms. If (*) is strictly greater that zero for all nontrivial  and  (i.e., not both zero), we say that the quadratic form is positive definite. If it is less that zero for all ...
	The conditions in the -variable case is the following: for  , the Hessian is
	Let
	, , , etc.
	These are called “leading principal minors” of the Hessian matrix.
	Second Order Conditions for Local Optima If at the stationary point ,
	, , , ...,
	then  has a local maximum at ; if at the stationary point
	, , , ..., ,
	then  has a local minimum at the stationary point .
	Second Order Conditions for Global Optima If for all ,
	, , , ...,
	then  is strictly concave, and achieves its strict global maximum at the stationary point ; if for all ,
	, , , ..., ,
	then  is strictly convex, and achieves its strict global minimum at the stationary point .
	We can rewrite the strict concavity condition as  for  .
	Example 21.3.1  Let . Then
	, , and ,
	so the only stationary point is . Furthermore, the Hessian matrix is
	=
	and we have
	, ,
	for all values of .  The function  is therefore strictly concave, and  is a strict global maximum point.
	The version that allows for possibly non-strict concavity and non-strict convexity is as follows: Given an  matrix,
	a principal minor of order , denoted by , is the determinant of the  matrix that remains when the same  rows and columns are deleted. For instance, for a  matrix
	The order 1 principal minors are
	The order 2 principal minors are
	The order 3 principal minor is ,
	i.e. it is the determinant of the matrix itself.
	The leading principal minors of a matrix are thus a subset of the principal minors.
	Consider  , and its Hessian
	We have the following:
	is convex   all  for all ,
	is concave   all  for all ,
	Example 21.3.2  Let . The Hessian matrix is
	.
	The order 1 principal minors are
	The order 2 principal minors are
	The order 3 principal minor is
	.
	We have
	all , all , and all ,
	therefore the function is concave. However, the leading principal minors are
	, , and
	they do not meet the requirement for strict concavity. Does this mean that the function is not strictly concave?
	21.4 The Envelope Theorem    Suppose a firm chooses  to maximize profit
	where P and q are prices, and N , the choice variable, is the quantity of an input to be used. Note that this is a univariate optimization problem, not a multivariate one. Even though the profit function is written as a function of , , and , we are ch...
	In general, the problem to be solved will depend on a number of parameters. In our simplified example, the only parameter is q. Solving this problem for a fixed value of  we have
	FOC  satisfies , or
	SOC
	so  maximizes profits. If the firm chooses this optimal level of input, then its profits will be
	.
	This is the firm’s maximum profits, for any given level of . It cannot do better. The optimal level  depends on the parameter , and therefore the maximum profit levels also depend on .
	In comparative statics, we are interested in two questions: how do the optimal choices change when the parameters change, and how the optimal value of the objective function changes when the parameter changes. In the context of this example, it is how...
	,
	and for , take , i.e., take  :
	.
	(as  increases, the maximum profit falls, as expected).
	In more general examples, simply taking derivatives might not be feasible. When we use general functions, for example, we often find that we cannot solve for the optimal choices explicitly (for instance, if we did not specify , but left it simply as ....
	This section is concerned with a method to simplify (in some cases, make feasible) the differentiating of the optimal value of the objective function with respect to the parameters.
	Coming back to our specific example, what we did to get  was to substitute the optimal solution into the objective function, then differentiate, i.e., we did . We computed the value function, then differentiated that. Note that we would have obtained ...
	.
	Evaluating this expression at , we obtain
	That is, .
	This is not a coincidence, but a consequence of the “Envelope Theorem”, and it applies in general. The result is perhaps surprising, and worth considering in greater detail.
	Applying the chain rule to  gives:
	There are two effects: even if I were to hold my optimal choice fixed at the pre-change value of , when  changes I should expect my profit levels to change (this is the second term). But because my optimal choice depends on , when  changes, my optimal...
	However, we know that , i.e., the derivative of  evaluated at the optimum, is zero. Therefore the first term is zero, and we have
	What happens is this: because  at the optimum , the effect of a change in  on  becomes negligible as we consider smaller changes in . In the limit, we can ignore this ‘indirect’ effect, and we only need to compute the direct effect of the parameter of...
	The envelope theorem can be stated for the general multivariable optimization problem: Suppose we have
	Maximize
	where the ’s are the choice variables.
	We carry out the maximization, and get , …,  as our solution.  Putting the ’s into our objective function gives the value function
	The envelope theorem states that
	.
	Example 21.4.1  Let the production function be , Q is output, K is capital input, L is labor input. Price per unit of Q is p, price per unit of K is r, price per unit of L is w.

