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Mathematics for Economics              Anthony Tay  

20. Multivariable Linear Approximations, and Differentials 

The concepts of differentials and linear approximations can be extended to functions of many variables. 

 

20.1   Linear Approximations  The linear approximation to a function ( , )z f x y=  at point 

0 0( , ) ( , )x y x y=  is the tangent plane to the function at that point. This tangent plane is the plane that 

passes through the point 0 0 0( , , )x y z , where 0 0 0( , )z f x y= , and has the same derivatives there as the 

function in every direction (and in particular the x- and y- directions). 

The equation of a plane is, in general,  

( , )p x y x yα β δ= + +  

We want the tangent to satisfy  

0 0 0 0( , ) ( , )p x y f x y= ,  

0 0 0 0( , ) ( , )x xp x y f x y′ ′= ,  

0 0 0 0( , ) ( , )y yp x y f x y′ ′= .  

Therefore  

0 0( , )x xp f x yβ′ ′= =  and 0 0( , )y yp f x yδ′ ′= = .  

Also, 0 0 0 0 0 0 0 0 0 0( , ) ( , ) ( , ) ( , )x yp x y f x y x f x y y f x yα ′ ′= + + = , which gives 

0 0 0 0 0 0 0 0( , ) ( , ) ( , )x yf x y f x y x f x y yα ′ ′= − −  

Substituting all this into ( , )p x y  above gives  

0 0 0 0 0 0 0 0( , ) ( , ) ( , )( ) ( , )( )x yp x y f x y f x y x x f x y y y′ ′= + − + −  

We use this function as the linear approximation to ( , )f x y  at the point 0 0( , )x y . That is to say, for all 

( , )x y  near (x0, y0), we make the approximation 

  0 0 0 0 0 0 0 0( , ) ( , ) ( , ) ( , )( ) ( , )( )x yf x y p x y f x y f x y x x f x y y y′ ′≈ = + − + − .     
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Example 20.1.1   Find the linear approx. for ( , ) 1f x y x y= + +  at the point ( , ) (0,0)x y = . We 

have (0,0) 1f = , and as 

1
2 1x yf f

x y
′ ′= =

+ +
  , 

so that (0,0) (0,0) 1/ 2x yf f′ ′= = . The linear approximation to the function at (0,0)  is thus 

1 1 11 ( 0) ( 0) 1 ( )
2 2 2

z x y x y= + − + − = + + . 

The function (curved surface) and the linear approximation (tangent plane) is shown below. 

 

Remarks:  The linear approximation to the function ( , )f x y  at the point 0 0( , ) ( , )x y x y=  can be written 

in matrix notation as 

0 0 0 0 0 0 0 0

00 0 0 00 0

0

0 0 0 0

( , ) ( , ) ( , ) ( , )( ) ( , )( )

( , ) ( , )( , )

( , ) ( )

x y

x y

f x y p x y f x y f x y x x f x y y y

x xf x y f x yf x y
y y

f x y

′ ′≈ = + − + −

 ′ ′ −= +     − 
′= + −f x x

 

where 0
x

y

f
f
′ 

′ =  ′ 
f  evaluated at the point 0 0( , )x y , 

x
y
 

=  
 

x , and 0
0

0

x
y
 

=  
 

x .  We can generalize to 

functions of more variables in the obvious way. 
 

The quadratic approximation is given (in matrix notation) by  

0 0 0 0 0 0 0
1( , ) ( , ) ( , ) ( ) ( ) ( )
2

f x y q x y f x y ′ ′≈ = + − + − −f x x x x H x x  

where 0H  is the hessian matrix xx xy

yx yy

f f
f f
′′ ′′ 

 ′′ ′′ 
 evaluated at 0 0( , )x y . (Proof omitted) 
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20.2   Differentials   Recall that linear approximations can be expressed in terms of changes. Let 

( )y f x=  be the function to be approximated, and consider a small change in x  from 0x x=  to 

0x x dx= + . The actual change in f  is 0 0( ) ( )f x dx f x+ − . The linear approximation to this change is  

0 0 0( ) ( ) ( )p x dx p x f x dx′+ − = . 

We denote the linear approximation to the actual change as “ df  ”, i.e.,  

0 0 0( ) ( ) ( )df p x dx p x f x dx′= + − = . 

For arbitrary x , we have ( )df f x dx′= . The quantities ‘ df ’ and ‘ dx ’ are called the differentials of f  

and x  respectively. If we write the function as ( )y f x= , we can write ( )dy f x dx′= .  

For functions of two variables, taking the linear approximation of ( , )f x dx y dy+ +  at any point 

( , )x y  gives 

( , ) ( , ) ( ) ( )

( , )

x y

x y

f x dx y dy f x y f x dx x f y dy y

f x y f dx f dy

′ ′+ + ≈ + + − + + −

′ ′= + +
    

Thus,  
( , ) ( , ) ( ) ( )x y

x y

f x dx y dy f x y f x dx x f y dy y

f dx f dy

′ ′+ + − ≈ + − + + −

′ ′= +
 

We call x yf dx f dy′ ′+  the total differential of f  and give it the symbol df  (or dz  if the function is 

written  ( , )z f x y= ). That is,  

x ydz f dx f dy′ ′= +   

This formula can be used to approximate changes in z  as a result of small changes in x  and y  by the 

amounts dx  and dy  respectively. 

NOTE again the conceptual difference between the (partial) derivatives and the (total) 

differential. The partial derivatives are the slopes of the function in particular directions. The differential 

is made up of four items, the two partials and the two quantities dx  and dy . It is a formula for taking 

the linear approximation to the change in the function value when x  and y  are increased by dx  and 

dy  respectively. 
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Example 20.2.1  Earlier, we considered the function ( , ) 1z f x y x y= = + + , and found that 

1
2 1x yf f

x y
′ ′= =

+ +
 

Therefore, the differential is  

1 ( )
2 1 2 1 2 1

dx dydz dx dy
x y x y x y

= + = +
+ + + + + +

. 

At the point ( , ) (0,0)x y = , we have (0,0) (0,0) 1/ 2x yf f′ ′= = , so 

1 1
2 2

dz dx dy= +   

At the point ( , ) (1,2)x y = , we have 1 1(1,2) (1,2)
42 1 1 2x yf f′ ′= = =

+ +
, so 

1 1
4 4

dz dx dy= +  

As an illustration, consider a change in ( , )x y  from (0,0)  to (0.1,0.1) , i.e., 0.1dx dy= = . At (0,0) , 

( , ) (0,0) 1f x y f= = . Because 

(0.1,0.1) 1 0.1 0.1 1.0954f = + + =  (4 dec pl.),  

the actual change in z  is 0.0954. Using the differential formula, at (0,0) , we have 

0.1 0.1 0.1
2 1 2 1 2 1 0 0 2 1 0 0

dx dydz
x y x y

= + = + =
+ + + + + + + +

 

which is our linear approximation to the actual change. The error is 0.0046. 

For functions of n-variables, all these ideas remain valid: if  1 2( , ,..., )nz f x x x= , then  

     1 1 2 2 ... n ndz df f dx f dx f dx′ ′ ′= = + + + .  

 
Example 20.2.2  Determine the total differential for z = x y2 + x3. We have 

2 23z y x
x
∂

= +
∂

, and 2z xy
y
∂

=
∂

.  

Therefore 2 2( 3 ) 2dz y x dx xy dy= + + . 
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20.3   Rules for Differentials  Although differentials and derivatives are different concepts, they 

contain the same information, and we can in fact differentiate expressions using the language of 

differentials. That is, we can use “rules for differentials” and differentiate expressions using these rules.  

   e.g.  If z xy= , then dz y dx x dy= + . 
 

Proof: /z x y∂ ∂ = , /z y x∂ ∂ = . Since z zdz dx dy
x y
∂ ∂

= +
∂ ∂

, we have dz y dx x dy= + . 

 

Many of you are in fact familiar with this, and other similar expressions, and some of you were taught 

to memorize rules for differentiation using these expressions. (Now you know that these expressions 

are not simply mnemonics, i.e. memorization tricks, but have real mathematical meaning.) 

For every differentiation rule, we can derive (and use) a corresponding “differential” rule.  
 
1. If z ax by= +  where a  and b  are constants, then dz a dx b dy= + ; 
 
2. If z xy= , then dz y dx x dy= + ; 
 

3. If xz
y

= , then 2

y dx x dydz
y
−

= ; 

 
4. If rz x= , then 1rdz rx dx−= ; 
 

5.  If lnz x= , then dxdz
x

= ; 

 
These rules can be used in conjunction with each other: 

  e.g.  If lnz y x= , then (ln ) ln ln lndx ydz y d x dy x y dy x dx x dy
x x

 = + = + = + 
 

. 

You can show this by computing the partial derivatives directly, and then constructing the differential 

from its definition: 

 since z y
x x
∂

=
∂

, lnz x
y
∂

=
∂

, and z zdz dx dy
x y
∂ ∂

= +
∂ ∂

, we have lnydz dx x dy
x

= + . 

 



Mathematics for Economics 
 

20-6 

Example 20.3.1  Find dz  in terms of dx  and dy  if 2 3z xy x= + .  

Using rules for differentials gives 

2 3

2 2 2

2 2

2 2

( ) ( )

( ) 3

2 3

(3 ) 2

dz d xy d x

xd y y dx x dx

xydy y dx x dx

x y dx xydy

= +

= + +

= + +

= + +

. 

In simple examples, it is probably easier to simply take the partial derivatives, but there are times when 

it is ‘cleaner’ to “take differentials”.  

The convenience of “taking differentials” really comes into play with the chain rule: 

Suppose ( )z f y= , and ( )y g x= . This means that ( ( ))z f g x= , so the differential (wrt x ) is 

[ ( ( ))]dz f g x dx′= . The chain rule gives us [ ( ( ))] ( ( )) ( )f g x f g x g x′ ′ ′= , so we have 

( ( )) ( )dz f g x g x dx′ ′= .  

We can obtain this expression using differentials. From  ( )z f y= , we have ( )dz f y dy′= , and 

( )y g x=   gives us ( )dy g x dx′= . Simply substituting the latter into the former gives  

      ( ) ( ) ( ( )) ( )dz f y g x dx f g x g x dx′ ′ ′ ′= = . 

The usefulness is in the fact that the expression ( )dz f y dy′=  is valid regardless of whether y  is a 

function of any other variable.  

E.g. If 2z xy= . Then 2 2 2( ) 2dz x d y y dx y dx xy dy= + = + . 

If lnx s t=  and 2y s t= + , then to find dz , simply take  

ln sdx t ds dt
t

= +   and  2dy ds t dt= +  

and substitute into the previous expression to find dz  with respect to ds  and dt  

2 2 2 2

2 2 2 2

2 ( ) [ln ] 2( ln )( )[ 2 ]

( )[( ) ln 2 ln ] ( )[( ) 4 ln ]

sdz y dx xy dy s t t ds dt s t s t ds tdt
t

ss t s t t s t ds s t s t st t dt
t

= + = + + + + +

= + + + + + + +
 

In fact, from here you can read off the partial derivatives: 

 2 2( )[( ) ln 2 ln ]z s t s t t s t
s
∂

= + + +
∂

   and   2 2( )[( ) 4 ln ]z ss t s t st t
t t
∂

= + + +
∂

. 
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We can apply all these ideas to systems of equations.  

Example 20.3.2  Suppose 

2 3 32u v u x y− = +  

and   uxe vy=  

where u  and v  are endogenous, and x  and y  are exogenous. In other words, u  and v  are functions 

of x  and y . You can easily show that the point ( , , , ) (0,1,2,1)x y u v =  satisfies both equations. What are 

the partial derivatives of u  and v  with respect to x  and to y ? 

Taking differentials, we have 
2 2 22 3 2(3 )u du v u dv du x dx y dy+ − = +  

( )uxe udx xdu vdy ydv+ = +  

Rewriting gives 

2 2 2( 2 1) ( ) 3 6
ux ux

v u du u dv x dx y dy

xe du y dv ue dx v dy

− + = +

− = − +
 

In principle, we can solve these two equations in two unknowns (the unknowns are du  and dv ) in 

terms of dx , dy , u , v , x  and y . The expressions will be, in this case, rather complicated (perhaps 

best expressed, and left, in matrix notation. 

Instead of obtaining the general solution, which we are not looking for, we apply this to the 

point ( , , , ) (0,1,2,1)x y u v = . We get  

3 4 0 6
0 1 2 1

du dv dx dy
du dv dx dy

+ = +
− = − +

 

So 2dv dx dy= −  and 

(1 / 3)[ 4 6 ] (1 / 3)[ 4(2 ) 6 ] (1 / 3)[ 8 10 ]du dv dy dx dy dy dx dy= − + = − − + = − +  

In other words, at the point ( , , , ) (0,1,2,1)x y u v = ,  

 / 2v x∂ ∂ = , / 1v y∂ ∂ = − , / 8 / 3u x∂ ∂ = − , and / 10 / 3u y∂ ∂ =  . 

If we are interested in the general expression for the derivatives, but are interested only in differentiating 

with respect to x , we can simplify the general problem by setting 0dy = . For example, in the general 

case, we would simply solve 
2 2( 2 1) ( ) 3

ux ux

v u du u dv x dx

xe du y dv ue dx

− + =

− = −
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Example 20.3.3  Consider the following macroeconomic model 

( , )C c Y r= , ( , )L l Y r= , ( , )VI h Y r=  

Y C I G= + + ,  V BI I I= + , M L=  

where f , g , and h  are functions. The endogenous variables are Y  (national income), r  (interest 

rates), L  (money demand), VI  (private investment), C  (consumption), and I  (total investment). The 

exogenous variables are M  (money supply), BI  (public investment), G  (public consumption) 

If BI  and M  are held fixed, what is the effect of an increase in G  on the endogenous variables? 

Differentiating gives 

Y rdC c dY c dr′ ′= + ,   Y rdL l dY l dr′ ′= + ,   V Y rdI h dY h dr′ ′= + , 

dY dC dI dG= + + ,  V BdI dI dI= + ,   dM dL= . 

Substituting, gives  

[ ] [( ) ]
( ) ( )

Y r Y r B

Y Y r r B

dY c dY c dr h dY h dr dI dG
c h dY c h dr dI dG
′ ′ ′ ′= + + + + +
′ ′ ′ ′= + + + + +

 

Y rdM l dY l dr′ ′= +  

Because we are interested in an increase in G  only, and are holding BI  and M  fixed, let us set 

0BdI dM= = . Then the two equations become (with some rewriting) 

[1 ( )] ( )Y Y r rc h dY c h dr dG′ ′ ′ ′− + − + =     and    0Y rl dY l dr′ ′+ =  

The second equation gives  

Y

r

ldr dY
l
′

= −
′

,  

and subs. into the first gives  

[1 ( )] ( )( / )Y Y r r Y rc h dY c h l l dY dG′ ′ ′ ′ ′ ′− + + + = , so  

[1 ( ) ( )( / )]Y Y r r Y rc h c h l l dY dG′ ′ ′ ′ ′ ′− + + + = , i.e.,  

(1 ) ( )
r

r Y Y Y r r

ldY dG
l c h l c h

′ 
=  ′ ′ ′ ′ ′ ′− − + + 

 

Subs into ( / )Y rdr l l dY′ ′= −  gives 
(1 ) ( )

Y

r Y Y Y r r

ldr dG
l c h l c h

′ 
= −  ′ ′ ′ ′ ′ ′− − + + 

. 

The other effects can be calculated from   

  V Y rdI dI h dY h dr′ ′= = + , Y rdL l dY l dr′ ′= + , and Y rdC c dY c dr′ ′= + . 
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Exercises 

 

1. Suppose Y AK Lα β= . Differentiate (using differentials) to show that 

dY dK dL
Y K L

α β= + . 

 

2.    Assume that the equation system 
2 2

2 2 2

1 0
3 0

x sxy y
x y s
+ + − =

+ − + =
 

defines x  and y  implicitly as differentiable functions of s . 

(a)     Differentiate the system (using differentials) and find the values of dx
ds

 and dy
ds

 when 0x = , 

1y = , 2s = . 

(b)  Find an approximate value of the change in x  if s  increases from 2  to 2.1 . 

 

3. The system of equations 
2

2

ln( ) 0v y

v

x u uv y e
u x v

++ + − =

− =
 

defines u  and v  as differentiable functions of x  and y  around the point ( , , , ) (2,1, 1, 0)P x y u v = − . 

(i)  Differentiate the system (using differentials); 

(ii)  Find the values of the partial derivatives xu′ , yu′ , xv′ , yv′ ; 

(iii)  Find an approximate value of (1.99,1.02)u , i.e., find the approximate value of u  at the point 

( , ) (1.99,1.02)x y = . 

 

4.  Let  Y C I= + ,  ( , )C f Y T r= − , and  ( )I h r= .  
 
(a) Differentiate all three equations to obtain three equations relating dY , dC , dI , dT , and dr .  
 

(b) Solve the three equations to obtain expressions for dY , dC , and dI , each in terms of dT  and 

dr  only.  
 
(c) Write down expressions for /Y T∂ ∂ , /C T∂ ∂ , /I T∂ ∂ , /Y r∂ ∂ , /C r∂ ∂ , and /I r∂ ∂ . 
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