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Mathematics for Economics             Anthony Tay 

19.   Chain Rule for Functions of Many Variables, and Applications 

19.1   The Chain Rule   

Suppose we have a function of n  variables 

1 2( , ,..., )ny F x x x= , 

where each of the arguments is itself a function of m  variables 1t , 2t , …, mt , i.e., 

1 2( , ,..., )i i mx f t t t= , i = 1, 2, …, n. 

What is the effect on y  of a change in jt , holding 1t , …, 1jt − , 1jt + , …, mt  fixed? 

When there is a change in jt , this results in changes in 1x , 2x , …,  and nx .  Changes in each 

of these will in turn result in changes in  y.  The chain rule states that the overall effect on  y  is simply 

the sum of all these individual effects. More concisely, 

1 2

1 2
... n

j j j n j

xx xy y y y
t x t x t x t

∂∂ ∂∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
. 

Example 19.1.1  Let  2( , )z F x y x y= = + ,   x t=  , 2y t= . 

Then  3(1)(1) (2 )(2 ) 1 4 1 4dz z dx z dy y t yt t
dt x dt y dt

∂ ∂
= + = + = + = +

∂ ∂
 

Example 19.1.2  Let  2( , )z F x y x y= = + ,   x t s= − , y ts=  

Then 2(1)(1) (2 )( ) 1 2 1 2z z x z y y s ys ts
t x t y t
∂ ∂ ∂ ∂ ∂

= + = + = + = +
∂ ∂ ∂ ∂ ∂

 

2(1)( 1) (2 )( ) 1 2 1 2z z x z y y t yt t s
s x s y s
∂ ∂ ∂ ∂ ∂

= + = − + = − + = − +
∂ ∂ ∂ ∂ ∂

 

Example 19.1.3  Suppose t  denotes time, and 1
0( ) r tL t L e=  and 2

0( ) r tK t K e=  (in other words, L  

and K  are growing at a constant rate over time, in particular, 

1
ln ( ) ( ) /

( )
d L t d L t dt r

dt L t
= =   and  2

ln ( ) ( ) /
( )

d K t d K t dt r
dt K t

= = . 

Now suppose that 1( , )Y F L K AL Kα α−= = . At what rate is ( )Y t  growing? 

     ln ln ( , ) ln ln (1 ) lnY F L K A L Kα α= = + + −  

Therefore,  

1 2
ln ( , ) ln ( , ) ln (1 )

ln ln
d Y F L K d L F L K d K r r

dt L dt K dt
α α∂ ∂

= + = + −
∂ ∂

. 
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We prove the chain rule for the simple case where n = 2, m = 1. The argument here is very similar to 

the chain rule for univariate functions that we proved in a previous class.  Suppose ( , )z F x y= , 

( )x f t= , ( )y g t= . Write ( ) ( ( ), ( ))t F f t g tφ = . Then 
 

0

0

( ) ( )lim

( ( ), ( )) ( ( ), ( ))lim

t

t

d t t t
dt t

F f t t g t t F f t g t
t

φ φ φ
∆ →

∆ →

+ ∆ −
=

∆
+ ∆ + ∆ −

=
∆

 

Define  ( ) ( ) ( )x f t t f t f t t x∆ = + ∆ − = + ∆ −   

( ) ( ) ( )y g t t g t g t t y∆ = + ∆ − = + ∆ − ,  

and substitute this into the expression above. 
 

0

0

0 0

0 0

( , ) ( , )lim

( , ) ( , ) ( , ) ( , )lim

( , ) ( , ) ( , ) ( , )lim lim

( , ) ( , ) ( , ) ( , )lim lim

t

t

t t

t t

d F x x y y F x y
dt t

F x x y y F x y y F x y y F x y
t

F x x y y F x y y F x y y F x y
t t

F x x y y F x y y x F x y y F x y
x t

φ
∆ →

∆ →

∆ → ∆ →

∆ → ∆ →

+ ∆ + ∆ −
=

∆
+ ∆ + ∆ + + ∆ − + ∆ −

=
∆

+ ∆ + ∆ − + ∆ + ∆ −
= +

∆ ∆
+ ∆ + ∆ − + ∆ ∆ + ∆ −

= +
∆ ∆

0 0 0 0

( , ) ( , ) ( , ) ( , )lim lim lim lim
t t t t

y
y t

F x x y y F x y y x F x y y F x y y
x t y t∆ → ∆ → ∆ → ∆ →

∆
∆ ∆

+ ∆ + ∆ − + ∆ ∆ + ∆ − ∆
= +

∆ ∆ ∆ ∆

 

Note that  
0 0

( ) ( )lim lim
t t

x x t t x t dx
t t dt∆ → ∆ →

∆ + ∆ −
= =

∆ ∆
 and 

0 0

( ) ( )lim lim
t t

y y t t y t dy
t t dt∆ → ∆ →

∆ + ∆ −
= =

∆ ∆
. 

Note also that 0x∆ →  and 0y∆ →  as 0t∆ → , therefore  

10

( , ) ( , )lim ( , )
t

F x x y y F x y y F x y
x∆ →

+ ∆ + ∆ − + ∆ ′=
∆

  

and  20

( , ) ( , )lim ( , )
t

F x y y F x y F x y
y∆ →

+ ∆ − ′=
∆

. 

This gives us the chain rule. 
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Example 19.1.4   (Second derivative with the Chain Rule)  
 
Let ( , )z f x y= , ( )x x t= , ( )y y t= .  Then  

x y
dz dx dyf f
dt dt dt

′ ′= +  

Note that xf ′  and yf ′  are themselves functions of x  and y . Therefore 
 

2

2

applying product rule to applying product rule to 

applying chain rule to 

( / ) ( / )

x y

x

yx
x y

dx dyf f
dt dt

xx xy

f

ffd z dx d dx dt dy d dy dtf f
dt dt dt dt dt dtdt

dx dyf f
dt dt

′ ′

′

′′ ∂∂ ′ ′= + + +

 ′′ ′′= +  

 

 

2 2

2 2

applying chain rule to 

2 2 2 2

2 22

y

x yx yy y

f

xx xy yy x y

dx d x dx dy dy d yf f f f
dt dt dt dtdt dt

dx dy dx dy d x d yf f f f f
dt dt dt dt dt dt

′

 ′ ′′ ′′ ′+ + + +  

   ′′ ′′ ′′ ′ ′= + + + +   
   

 

 

 
 

Example 19.1.5  (Directional Derivatives)    We can use the chain rule to compute slopes in 

directions other than along the x - or y - axes. 

Let ( , )z f x y= , 0x x th= + , 0y y tk= + . Then /dz dt  gives the derivative of z  as x  and y  

change according to the proportion 

 change in 
change in 

y k
x h
= . 

We have 

x y x y
dz dx dyf f f h f k
dt dt dt

′ ′ ′ ′= + = +     and    
2

2 2
2 2xx xy yy

d z f h f hk f k
dt

′′ ′′ ′′= + + . 

If 2 2 1h k+ = , /dz dt  is called the directional derivative. 
 

Exercise: Show that 
2

2 2
2 2xx xy yy

d z f h f hk f k
dt

′′ ′′ ′′= + +  can be written in matrix form as 

[ ]2

2
xx xy

xy yy

f f hh kd z
f f kdt

′′ ′′   
=    ′′ ′′    

. 
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19.2   Implicit Differentiation Revisited  Using the chain rule, we can derive a general formula for 

implicit differentiation. Given an equation involving x  and y , rewrite the equation in the form 

( , )F x y c= , where c  is some constant. If the function ( )y g x=  is a local solution to ( , )F x y c= , then 

( , ( ))F x g x c= , and implicit differentiation gives 

( , ) ( , ) 0F x y dx F x y dy
x dx y dx

∂ ∂
+ =

∂ ∂
        

so that    

( , )

( , )

F x y
dy x

F x ydx
y

∂
∂= −

∂
∂

.        (*)    

If 0 0( , ) / 0F x y y∂ ∂ ≠ , and 0 0( , )F x y  is continuously differentiable over an open interval containing 

0 0( , )x y , then a local solution exists that passes through 0 0( , )x y , and its derivative is given by (*). 

Example 19.2.1  The following is the graph of 2 3 2 0y x x− − = . In an earlier chapter, we use 

implicit differentiation and found that 22 3 2 0yy x x′ − − = , or 
2(3 2 ) / 2y x x y′ = + . 

Using the formula (*) we have:  

 ( , )F x y  = 2 3 2 0y x x− − =   

     ( , ) 2F x y y
y

∂
=

∂
, ( , )F x y

x
∂

∂
= −3x2 − 2x  

which gives  

     ( )
2

21 3 23 2
2 2

x xy x x
y y

  +′ = − − − = 
 

. 

 
 
 

The derivative of this implicit function is defined at every point of the graph of the equation, except for 

the points (0,0) and (−1,0), i.e., where 0y = . 
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Example 19.2.2   Isoquants, Elasticity of Substitution     

One useful application of implicit derivation is in computing the slope of level curves, or contours. 

Suppose  

z   =   F (x, y). 

Consider the contour F (x, y) = c. Suppose this equation implicitly defines a function ( )y f x= , that is, 

there is a function ( )f x  such that  ( , ( ))F x f x c= . Then, 

1 20 ( , ) ( , ) dyF x y F x y
dx

′ ′= +     ⇒    1

2

( , )
( , )

F x ydy
dx F x y

′
= −

′
 as long as 2 ( , )F x y′ ≠ 0. 

This equation tells us, when x  changes, how much y  must change in order to keep F at the same level: 

y  must change so that 2 ( , )F x y′  completely compensates 1 ( , )F x y′ . The quantity  

1

2

( , )
( , )

F x y
F x y

′

′
 

i.e., /dy dx  without the negative sign, is often referred to as the Marginal Rate of Substitution (MRS) 

between y  and x  and is a very useful concept in economics.  

Implicit differentiation readily extends to functions of two variables implicitly defined by an 

equation in three variables. Suppose 

( , , )F x y z c=  

and that ( , )z f x y=  is a function that is implicitly defined by this equation, i.e. 

( , , ( , ))F x y f x y c= . 

Then, we have 

 . 0F dx F z
x dx z x

∂ ∂ ∂
+ =

∂ ∂ ∂
     [Note: we have changing x , holding y  fixed] 

and    . 0F dy F z
y dy z y

∂ ∂ ∂
+ =

∂ ∂ ∂
  [Note: here we change y , holding x  fixed] 

which gives 

z F F
x zx

∂ ∂ ∂
= −

∂ ∂∂
  and  z F F

y zy
∂ ∂ ∂

= −
∂ ∂∂

. 

The essential point is that to find /z x∂ ∂  where ( , )z f x y=  is implicitly defined by the equation 

( , , )F x y z c= , we can simply treat y  as a constant, and apply the formula (*). 
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Example 19.2.3  You want to buy 0x  of a product. You currently have an offer from someone to 

sell you the product at 0p  per unit, but you can search the market for a lower price. Suppose that by 

spending  t  units of time, you can get price ( )p t , but that the opportunity cost is ( )c t wt= . Suppose 

( ) 0p t′ < , ( ) 0p t′′ > . 

Your “profit” from spending  t  units searching for a lower price is  

0 0( ) ( ( ))t p p t x wtπ = − − . 

The first order condition for profit maximization is  

*
0 ( ) 0x p t w′− − =  

i.e., the profit maximizing time spent searching is the *t  that satisfies this equation.   

The second order condition which guarantees that *t  to be a strict global maximum is 

0( ) ( ) 0t x p tπ ′′ ′′= − < , 

and is satisfied because of the assumption that ( ) 0p t′′ > . 

Note that *t , implicitly defined by the first order condition, are functions of w  and 0x , i.e., 

* *
0( , )t t w x= . How does the optimal search time *t  change when w  changes?  When 0x  changes?  

 

Let * *
0 0( , , ) ( ) 0F x w t p t x w′= − − = . Then 

 

1F
w
∂

= −
∂

,  *

0

( )F p t
x
∂ ′= −
∂

,  and *
0* ( )F p t x

t
∂ ′′= −
∂

. 

Therefore,  
*

* *
0

1 0
( )

t F F
ww t p t x

∂ ∂ ∂
= − = − <

∂∂ ′′∂
   and 

* *

* *
00 0

( ) 0
( )

t p tF F
xx t p t x

′∂ ∂ ∂
= − = − >

∂∂ ′′∂
. 

 

Question: we said that 1F
w
∂

= −
∂

. We also pointed out that *t  is a function of w  and 0x . Why is 
*

*
0( ) 1F tp t x

w w
∂ ∂′′≠ − −
∂ ∂

?  
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Implicit Function Theorem for Systems of Equations  A formula similar to (*) exists for functions 

implicitly defined in systems of equations. Suppose the variables 1x  and 2x  satisfies the equations 

1 1 2 1

2 1 2 2

( , , )
( , , )

f x x c
f x x c

α
α

=
=

 

simultaneously; here α  is a parameter. The solutions *
1 ( )x α  and *

2 ( )x α  are then implicitly defined by 

the two equations, i.e., *
1 ( )x α  and *

2 ( )x α  satisfies 

* *
1 1 2 1

* *
2 1 2 2

( ( ), ( ), )
( ( ), ( ), )

f x x c
f x x c

α α α

α α α

=

=
 

(You might be able to find these two solutions explicitly. The point here is that you don’t need to be 

able to solve the equations explicitly in order to find the derivatives. Also, note that the subscripts in 1f  

and 2f  does not indicate derivatives, but are there to say that we have two different functions.) 

Differentiating both equations by α  gives 
* *

1 1 1 2 1
* *
1 2

* *
2 1 2 2 2
* *
1 2

0

0

f dx f dx f
x d x d
f dx f dx f
x d x d

α α α

α α α

∂ ∂ ∂
+ + =

∂ ∂ ∂

∂ ∂ ∂
+ + =

∂ ∂ ∂

 

or in matrix notation 

*
1 1 1 1
* *
1 2

*
2 2 22
* *
1 2

f f dx f
x x d
f f fdx
x x d

α α

αα

∂ ∂    ∂ 
     ∂ ∂ ∂    = −  
 ∂ ∂ ∂   
     ∂ ∂ ∂   

 

which gives 

*
1 11 1
* *
1 2

*
2 2 22
* *
1 2

1f fdx f
x xd
f f fdx
x xd

α α

αα

−∂ ∂   ∂ 
    ∂ ∂ ∂   = −  
 ∂ ∂ ∂   
    ∂ ∂ ∂    

. 

This formula extends to more than two equations, and more than two exogenous variables, and is known 

as the Implicit Function Theorem. The formula (*) is simply a special case with one endogenous 

variable and one equation. 
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Example 19.2.4  Here is an example from a previous section: consider the system of equations 

        2u v x+ =  

  21uv x= −  

which u  and v  satisfies simultaneously, for any given x . We wish to find how the solutions *u  and 

*v  changes with x , i.e. we wish to find * /u x∂ ∂  and * /v x∂ ∂ . Write the equations as 

      * * *2 *
1( , , ) 0f u v x u v x= + − =  

      * * * * 2
2 ( , , ) 1f u v x u v x= − =  

Then 
*

1 1 1
* *

*
2 2 2
* *

*

* *

1

1 12 1
2

f f fdu
dx u v x

f f fdv
u v xdx

u
xv u

−

−

  ∂ ∂ ∂   
     ∂ ∂ ∂  = −    

∂ ∂ ∂     
     ∂ ∂ ∂    

   
=    

  

 

which you can solve easily using Cramer’s rule.  [We will usually skip the asterisks in presentations of 

these sort – as we did in example 14.3.1 – in order to keep the notation clean]. 

 

19.3   Homogenous Functions and Euler’s Theorem  Here are a few more applications of the chain 

rule in economics.  

A function 1 2( , ,..., )nf x x x  is homogenous of degree r  if 

1 2 1 2( , ,..., ) ( , ,..., )r
n nf tx tx tx t f x x x= . 

Homogeneity of degree 1 is called linear homogeneity. 

Example 19.3.1  2 3( , ) 3f x y x y y= −  is homogenous of degree three, because 

2 3 3 2 3 3( , ) 3( ) ( ) ( ) (3 ) ( , )f tx ty tx ty ty t x y y t f x y= − = − =  

Example 19.3.2  4 2 2( , )f x y x x y= +  is homogenous of degree four, because 

4 2 2 4 4 4 2 2 4 4 2 2 4( , ) ( ) ( ) ( ) ( ) ( , )f tx ty tx tx ty t x t x y t x x y t f x y= + = + = + =  

Example 19.3.3  Let 1( , )f L K L Kα α−= .  

Then  1 1( , ) ( ) ( ) ( , )f tL tK tL tK tL K tf L Kα α α α− −= = = . 

If ( , )f K L  represents a production function, then the property of linear homogeneity is referred to as 

“Constant Returns to Scale” 
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Example 19.3.4  Suppose *
1 1 2( , ,..., , )nx p p p M  represents the demand for a good where 1p  is the 

price of the good, and 2 ,..., np p  is the price of other goods, and M  is income. If prices and income 

increase by a factor k  (e.g., if all prices and income both doubles), then we might expect the consumer’s 

behavior to remain unchanged (i.e., there is no money illusion). That is, we would have 
* *
1 1 2 1 1 2( , ,..., , ) ( , ,..., , )n nx tp tp tp tM x p p p M= . 

In terms of homogeneity, we would say that the demand function *
1 1 2( , ,..., , )nx p p p M  is homogenous 

of degree zero. 

There are a number of results for homogenous functions that are very useful. 

Theorem If 1 2( , ,..., )nf x x x  is homogenous of degree r , then the first partials 1f ′ , 2f ′ , ..., nf ′  are 

all homogenous of degree 1r − . 

Proof  

Because f  is homogeneous of degree r , 

1 2 1 2( , ,..., ) ( , ,..., )r
n nf tx tx tx t f x x x= . 

We can differentiate both sides with respect to ix  to get  

1 2 1 2
( )( , ,..., ) ( , ,..., )ri

i n i n
i

txf tx tx tx t f x x x
x

∂′ ′=
∂

 

1 2 1 2( , ,..., ) ( , ,..., )r
i n i nf tx tx tx t t f x x x′ ′=  

1
1 2 1 2( , ,..., ) ( , ,..., )r

i n i nf tx tx tx t f x x x−′ ′=  
 

Example 19.3.4  If 1( , )f L K L Kα α−=  represents a production function, then the marginal products 

of K  and L  are homogenous of degree zero: 

1( , )f L K L Kα α−=  

1 1 1( , ) ( / )Lf L K L K K Lα α αα α− − −′ = =  

( , ) (1 ) ( / )Kf L K L K K Lα α αα α− −′ = − =  

It is easy to verify the zero degree homogeneity of the marginal products.  
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Theorem (Euler’s Theorem) If 1 2( , ,..., )nf x x x  is homogenous of degree r , then  

1 2 1 2
1 21

... ( , ,..., )
n

i n n
i ni

f f f fx x x x rf x x x
x x x x=

∂ ∂ ∂ ∂
= + + + =

∂ ∂ ∂ ∂∑  

Proof 

Differentiate both sides of  

1 2 1 2( , ,..., ) ( , ,..., )r
n nf tx tx tx t f x x x=  

with respect to t  to get 

1 2
1 1 2 2 1 2 1 2

1 2

( )( ) ( )( , ... ) ( , ,... ) ... ( , ... )

( )( , ,..., )

n
n n n n

r

n

d t xt x d t xf t x tx t x f t x tx t x f t x tx t x
t dt dt

d tf x x x
dt

∂′ ′ ′+ + +
∂

=
  

⇒  1
1 1 1 2 1 2 1 1 2( ,... ) ( ,... ) ... ( ,... ) ( , ,..., ) r

n n n n n nf t x t x x f t x t x x f t x t x x f x x x rt −′ ′ ′+ + + =  

⇒  1 1 1 1
1 1 1 2 2 1 1 1 2( ,... ) ( ,... ) ... ( ,... ) ( , ,..., )r r r r

n n n n n nt x f x x t x f x x t x f x x rt f x x x− − − −′ ′ ′+ + + =  

⇒  1 1 1 2 2 1 1 1 2( ,... ) ( ,... ) ... ( ,... ) ( , ,..., )n n n n n nx f x x x f x x x f x x rf x x x′ ′ ′+ + + =  

Corollary  If 0r = , then 1 2
1

( , ,..., ) 0
n

i n i
i

f x x x x
=

′ =∑ . 

It is also true that if  

1 2 1 2
1 21

... ( , ,..., )
n

i n n
i ni

f f f fx x x x rf x x x
x x x x=

∂ ∂ ∂ ∂
= + + + =

∂ ∂ ∂ ∂∑  

then the function 1 2( , ,..., )nf x x x  is homogenous of degree r . The proof of this statement is omitted.  

Example 19.3.5  If 1( , )f L K L Kα α−= , then  
1 1 1( , ) ( / )Lf L K L K K Lα α αα α− − −′ = = ,  

( , ) (1 ) ( / )Kf L K L K K Lα α αα α− −′ = − = , and 

   1 1 1( , ) ( , ) (1 ) 1 ( , )L KLf L K Kf L K L K L K L K f L Kα α α α α αα α− − −′ ′+ = + − = =  
 

Example 19.3.6  If 1 2( , ,..., ) ( )nf x x x f= x  is homogenous of degree k  then  

1 2
El ( ) El ( ) ... El ( )

nx x xf f f k+ + + =x x x . 

This follows immediately from Euler’s Theorem, dividing throughout by f . 
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Exercises 
 

1. Find dz
dt

 using the chain rule when 

 (a)   1 xyz e −= , 1/3x t= , 3y t=    

 (b)   2ln(2 )z x y= + , x t= , 2/3y t=  

 (c)   41 2z x wx y= + − , lnx t= , 2/3y t= , 2w t−=  

Confirm your answers by substituting ( )x t , ( )y t  and ( )w t  into the expression for z  and differentiating 

directly. 

 

2. Find z
u
∂
∂

 and z
v
∂
∂

 using the chain rule when 

 (a)   28 2 3z x y x y= − + , x uv= , y u v= −   

 (b)   
2x yz e= , lnx u v u= + , 2 lny u v v= −  

Confirm your answers by substituting ( , )x u v  and ( , )y u v  into the expression for z  and differentiating 

directly. 

 

3. Find 
1, 2u v

f
u = =−

∂
∂

 when 2 2( , ) 2f x y x y x y= − + , x u= , 3y uv= . 

 
4. Suppose each of the following equations implicitly defines y  as a differentiable function of x . 

Find dy
dx

  

(a)   3 2 33 5x xy y− + =   (b)   1xy ye ye+ =   (c)   4 3x xy y− = −  

 

5. Each of the following equations defines z  implicitly as a differentiable function of x  and y . Find 
z
x
∂
∂

 and z
y
∂
∂

.  

 (a)    3 23 2 0x yz xyz− + − =    (b)    2ln(1 ) 1z xy z+ + = −  

 

6. Suppose ( )z g u=  and ( , )u g x y= . Write down the appropriate chain rule for finding z
x
∂
∂

 and z
y
∂
∂

. 

Find the appropriate expressions for 
2

2
z

x
∂
∂

, 
2

2
z

y
∂
∂

, and 
2z

x y
∂
∂ ∂

. 
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7. Suppose 2 2( )z f x y= + . Show that 0z zy x
x y
∂ ∂

− =
∂ ∂

. 

 
8. Let ( ) ( ,1 ,1 / (1 ) )g r f r r r= − − . Find an expression for ( )g r′  in terms of r , 1f ′ , 2f ′ , and 3f ′ . 
  

9. Suppose ( , )z f x y= , where ( , )x x t s= , ( , )y y t s= , ( )t t q= , and ( )s s q= . That is, z  is a function 

of x  and y , x  and y  are functions of both t  and s , and both  t  and s  are functions of q . Find 

an expression for /dz dq . 
 
10. The equation  

2 1 1ln 2(ln ) ln ln
2 3

x x K L+ = +  

defines x  as a differentiable function of K  and L . Find /x K∂ ∂  and /x L∂ ∂ .  
 
11. Show that if ( , ) ( , )z f x y g x y= , then El El Elx x xz f g= + . 

 
12. Consider the equation system 

2

( )
( , )

yxe yf z a
xg x y z b

+ =

+ =
 

where ( )f z  and ( , )g x y  are differentiable functions, and a  and b  are constants. Suppose that the 

system defines x  and y  as differentiable functions of z . Find expressions for /dx dz  and /dy dz . 
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