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Mathematics for Economics              Anthony Tay 

15.   Integration   

The first methods used to measure the area between a graph and the x -axis were based on 

approximations, and taking the approximations to the limit. (We call areas computed this way ‘definite 

integrals’.) Later, the connection between areas and derivatives was discovered and used to greatly 

simplify the solution to the area problem.  

It should be mentioned that approximations remain an important part of the integration story, 

and there remain many ‘area’ problems that can only be solved using approximations (now with the 

help of computers, of course).   

 

15.1 The area between a graph and the x -axis over the interval [ , ]a b  can be approximated by a sum 

of the areas of rectangles:  

*

1
Approx. Area ( )

n

i
i

f x x
=

= ∆∑ , b ax
n
−

∆ = , *
1[ , ]i i ix x x−∈ , 0x a= , 1i ix x x−= + ∆ , 1,...,i n= .      

The larger n  is, the more accurate is the approximation. The definite integral of f  from a  to b  is 

defined as 

*

1
( ) lim ( )

nb
ia n i

f x dx f x x
→∞ =

= ∆∑∫  

is the limit exists. 

Remark  The integral sign ∫  was first introduced by Liebniz, and is intended to be a stylized ‘S’ for 

‘sum’, reflecting the idea that the integral is the limit of a sum. When writing  

( )
b

a
f x dx∫ ,  

the function ( )f x  is called the integrand, and a  and b  are the lower and upper limits of integration 

respectively. The symbol dx  is there to indicate the independent variable, and is there to mimic the ‘

x∆ ’ on the right-hand side. The process of calculating an integral is called integration. The sum 

 *

1
( )

n

i
i

f x x
=

∆∑   

is called the Riemann sum. 
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Example 15.1.1   Find the definite integral 
2 3

1
x dx∫ .   

The Riemann sum is  

( )3*

1

n

i
i

x x
=

∆∑ , 2 1 1x
n n
−

∆ = = , *
1[ , ]i i ix x x−∈ , 0 1x = , 1i ix x x−= + ∆ , 1,...,i n= . 

We take *
ix  to be the right end point of the interval 1[ , ]i ix x− , i.e., we take * 1 /ix i n= + . Therefore, the 

Riemann sum is   
3 2 3

2 3
2 3 2 3 4

1 1 1 1 1

1 1 3 3 3 3 11 1 1
n n n n n

i i i i i

i i i i i i i
n n n n n n n n n= = = = =

  + = + + + = + + +  
   

∑ ∑ ∑ ∑ ∑  

Note that  

2 2
1

1 1 ( 1) 1
2 2

n

i

n ni
n n=

+
= →∑  as n →∞   

2
3 3

1

1 1 ( 1)(2 1) 1
6 3

n

i

n n ni
n n=

+ +
= →∑  as n →∞   (why?) 

2 2 2
3

4 4 4
1 1

1 1 1 ( 1) 1
4 4

n n

i i

n ni i
n n n= =

+ 
= = → 

 
∑ ∑  

Therefore 
3

2 3 2 3
2 3 41

1 1 1 1

1 3 3 1 3 1 15lim 1 lim 1 1 1
2 4 4

n n n n

n ni i i i

ix dx i i i
n n n n n→∞ →∞

= = = =

  = + = + + + = + + + =      
∑ ∑ ∑ ∑∫ ð   

 

15.1.2 Exercise  Find the definite integral 
2 3

0
x dx∫  by taking the limit of the Riemann sum 

choosing *
ix  to be the left endpoint of 1[ , ]i ix x− . Draw a diagram to illustrate the Riemann sum. 

 

15.1.3 Exercise  Find 
2 2

0
x dx∫  by taking the limit of the Riemann sum. 

 
Remark  If ( )f x  takes positive and negative values, then the definite integral gives the net area. 
 

15.14 Exercise  Find 
2 3

1
x dx

−∫ by taking the limit of the Riemann sum. Compare your answer 

to that in Exercise 15.1.2. Draw a diagram to illustrate the Riemann sum, and the area computed.   

 

There are cases where the limit of the Riemann sum does not exist. If the limit exists, we say that the 

function in integrable over the interval [ , ]a b . Fortunately, most of the functions we will deal with are 

integrable: 
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Theorem   If f  is continuous over [ , ]a b , or if it has only a finite number of jump discontinuities, 

then f  is integrable over [ , ]a b .  

(Proof omitted) 
 
15.2 Properties of the definite integral: 

 (a) ( ) ( )
b a

a b
f x dx f x dx= −∫ ∫   

 (b) ( ) 0
a

a
f x dx =∫  

 (c) ( ) ( )
b b

a a
cf x dx c f x dx=∫ ∫  where c  is any constant 

 (d) [ ( ) ( )] ( ) g( )
b b b

a a a
f x g x dx f x dx x dx− = −∫ ∫ ∫  

 (e) ( ) ( ) ( )
c b b

a c a
f x dx f x dx f x dx+ =∫ ∫ ∫  

 (f) If ( ) 0f x ≥  over [ , ]a b , then ( ) 0
b

a
f x dx ≥∫  

 (g) If ( ) ( )f x g x≥  over [ , ]a b , then ( ) ( )
b b

a a
f x dx g x dx≥∫ ∫  

 (h) If ( )m f x M≤ ≤  over [ , ]a b , then  

( ) ( ) ( )
b

a
m b a f x dx M b a− ≤ ≤ −∫  

Proofs are omitted. 
 
 

15.2.1 Example Find 
2 3

1
(1 2 )x dx+∫ . 

We have 
2 2 23 3

1 1 1

15 17(1 2 ) 1 2 1 2
4 2

x dx dx x dx+ = + = + =∫ ∫ ∫  

 

15.2.2  Exercise  Find 
2 2 3

0
(3 4 2 )x x dx+ +∫ . 

 

15.2.3 Exercise Show that 
2

2
( ) 0f x dx

−
=∫  for any odd function ( )f x .  

  
15.2.4 Exercise Use property 15.2(h) to show that 

21

0
0.367 1xe dx−≤ ≤∫  

Even with the help of the properties of definite integrals, finding areas by taking the limits of Riemann 

sums is not easy except in the simplest examples. The following results, called the fundamental 

theorems of calculus, make finding areas easy. In some cases, previously intractable problems become 

trivial. 
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15.3 The Fundamental Theorem of Calculus I  If f  is continuous on [ , ]a b , then the function 

g  defined by 

( ) ( )
x

a
g x f t dt= ∫  

is continuous on [ , ]a b , differentiable on ( , )a b , and ( ) ( )g x f x′ = . 

Proof 

If x  and x h+  are in ( , )a b , then  

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( )

x h x

a a
x x h x

a x a

x h

x

g x h g x f t dt f t dt

f t dt f t dt f t dt

f t dt

+

+

+

+ − = −

= − −

=

∫ ∫

∫ ∫ ∫

∫

 

so for 0h ≠ ,  
( ) ( ) 1 ( )

x h

x

g x h g x f t dt
h h

++ −
= ∫  

Suppose for now that 0h > . Since f  is continuous on [ , ]x x h+ , the Extreme Value Theorem says that 

there exists , [ , ]u v x x h∈ +  such that ( )f u  and ( )f v  are the global minimum and global maximum 

values of f  over [ , ]x x h+ . We have    

( ) ( ) ( )
x h

x
f u h f t dt f v h

+
≤ ≤∫  

1( ) ( ) ( )
x h

x
f u f t dt f v

h
+

≤ ≤∫  

( ) ( )( ) ( )g x h g xf u f v
h

+ −
≤ ≤  

A similar expression can be obtained for 0h < . Now let 0h →    

0 0 0

( ) ( )lim ( ) lim lim ( )
h h h

g x h g xf u f v
h→ → →

+ −
≤ ≤  

Since , [ , ]u v x x h∈ + , ,u v x→  as 0h → . Also, the middle expression is ( )g x′  by definition. 

Therefore we can write the above as 

lim ( ) ( ) lim ( )
u x v x

f u g x f v
→ →

′≤ ≤  

Since f  is continuous at x , lim ( ) lim ( ) ( )
u x v x

f u f v f x
→ →

= = . It follows from the Squeeze Theorem that 

( ) ( )g x f x′ =  
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For x a=  or x b= , we can apply one-sided limits to the argument above to show that ( )g x  is 

continuous at those points . 

 

The FTC1 shows us the exact sense in which integration and differentiation are ‘inverse’ operations. 

using Liebniz notation for derivatives, we can express FTC1 as:  

if f  is continuous on [ , ]a b , then ( ) ( )
x

a

d f t dt f x
dx

=∫ . 

 

15.4 Given a function ( )f x , another function ( )F x  satisfying ( ) ( )F x f x′ =  is called an 

antiderivative of ( )f x . For example, it is clear that for any C ,  

31( )
3

F x x C= +  

has derivative 2x . That is, for any constant C , 31( )
3

F x x C= +  is an antiderivative of the function 
2( )f x x= .  

 
15.4.1 Example    Because  

11
1

a ad x C x
dx a

+ + = + 
, 1a ≠ − , for any constant C , 

therefore 11
1

ax C
a

+ +
+

 is an the antiderivative of ax , for any 1a ≠ −  and any constant C .    

  
 
15.4.2 Example    Because  

1ln | |d x
dx x

=  for 0x ≠ , 

  therefore ln | |x C+  is an antiderivative of 1
x

 , 0x ≠ , for any C . 

 

The Fundamental Theorem of Calculus II  If f  is continuous on [ , ]a b , then 

( ) ( ) ( )
b

a
f x dx F b F a= −∫  

where F  is any antiderivative of f . 

Proof 

Let ( ) ( )
x

a
g x f x dx= ∫ . FTC1 says that ( ) ( )g x f x′ = , so g  is an antiderivative of f . This allows us 

to write 
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( ) ( )F x g x C= +  

for ( , )x a b∈ . Since g  is continuous over [ , ]a b , this equality also holds over [ , ]a b . Therefore 

( ) ( ) ( ( ) ) ( ( )

since ( ) ( )

)

( ) ( )

(

)

) 0

(

a

a
b

a

F b F a g b C g a C

g b g

g a f t dt

a

g b

f t dt

− = + − +

= −

= = =

=

∫

∫ ð

 

The second fundamental theorem of calculus therefore moves us from computing integrals as a limit of 

sums, to computing definite integrals by finding antiderivatives. The theorem also shows that 

differentiation and integration are inverse processes.  

Another useful way of writing the FTC1 is 

( ) ( ) ( )
b

a
F x dx F b F a′ = −∫ . 

Because of the close connection between the definite integral and the antiderivative, we use the 

notation 
( )f x dx∫  

to denote the antiderivative. Note that the antiderivative is a family of functions, whereas the definite 

integral is a number.  

 

15.4.3 Example We write 

1 ln | |dx x C
x

= +∫  

15.5 The FTC highlights the importance of developing systematic ways of finding antiderivatives. 

These generally come from ‘reversing’ the rules for finding derivatives. 
 
The substitution rule 

e.g Find 
21 4

x dx
x−

∫ .  

Suppose we define 21 4u x= − . Then the differential of u  is 8du x dx= − . If we treated the ‘ dx ’ in the 

integral as though it is the differential dx  in 8du x dx= − , and write  

2 2

1 1 1
81 4 1 4

x dx x dx du
ux x
 = = − 
 − −

∫ ∫ ∫ , 
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then the integral becomes very easy to solve. 

21 1 1 1 1 12 1 4
8 8 8 4

du du u C x C
u u
 − = − = − + = − − + 
 ∫ ∫ . 

To check that this is correct:  

( ) 1/22 2
2

1 1 11 4 1 4 ( 8 )
4 4 2 1 4

d xx C x x
dx x

− − − + = − − − = 
  −

. 

Why does this work? Remember that the symbol ‘ dx ’ in the integral is simply notation (albeit a 

cleverly chosen one). The rationale for the method is the chain rule: 

[ ( ( ))] ( ( )) ( )F g x F g x g x′ ′ ′=  

from which it follows, if we write ( )u g x=  and ( ) ( )F x f x′ = , that   

( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ) ( )F g x g x dx f g x g x dx F g x C F u C F u du f u du′ ′ ′ ′= = + = + = =∫ ∫ ∫ ∫ . 

The substitution rule can be used whenever you are faced with an integral of the form 

( ( )) ( )f g x g x dx′∫ . 

The argument above says that to integrate an expression of the form ( ( )) ( )f g x g x′ , make the 

substitutions ( )u g x= , replacing ( )g x dx′  with du , and integrate ( )f u  with respect to u , then convert 

back to x . The trick is to recognize when the integrand takes the form ( ( )) ( )f g x g x′ .  

The following mnemonic is helpful for implementing integration by substitution: given an 

integration problem 

( ( )) ( )f g x g x dx′∫  

make the substitutions ( )u g x=  and ( )du g x dx′=  and rewrite the problem as  



( ( )) ( ) ( )
u du

f g x g x dx f u du′ =∫ ∫
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15.5.1 Example [SH 9.6.2(a)]  Evaluate  2 5(2 3)x x dx+∫  

 
Let 2( ) 2 3u g x x= = + , then 4du x dx= . Rewrite   

2 5 2 51(2 3) [(2 3) (4 )]
4

x x x x+ = +  

Then  



2 5 2 5 5 6 2 61 1 1 1 1(2 3) (2 3) 4 (2 3)
4 4 4 6 24u du

x x dx x x dx u du u x C+ = + = = = + +∫ ∫ ∫

 

Applying this to definite integrals, since [ ( ( ))] ( ( )) ( )F g x F g x g x′ ′ ′= , we have 
( )

( )
( ( )) ( ) ( ( )) ( ( )) ( )

b g b

a g a
f g x g x dx F g b F g a f u du′ = − =∫ ∫  

 
 

15.5.2   Example SH 9.6.3(a)   Evaluate 
1 2
0

1x x dx+∫ . 

Let 2( ) 1u g x x= = +  so that 2du x dx= . Rewrite 2 211 [2 1 ]
2

x x x x+ = + .  

Furthermore, (0) 1g =  and (1) 2g = .  Then  





2
1 (1) 22 2 3/2
0 (0) 1

1

1 1 1 2 1 2 2 11 1 2 2 2 (2 2 1)
2 2 2 3 2 3 3 3

g

g
u du

x x dx x x dx u du u   + = + = = = − = −     ∫ ∫ ∫  

Integration by Parts  Just as the substitution rule for integration comes from the chain rule for 

differentiation, integration by parts is the integration counterpart of the product rule for differentiation. 

The product rule states that 

[ ( ) ( )] ( ) ( ) ( ) ( )d f x g x f x g x f x g x
dx

′ ′= + . 

In terms of integration, this says that 

[ ( ) ( ) ( ) ( )] ( ) ( )f x g x f x g x dx f x g x′ ′+ =∫  

or 
( ) ( ) ( ) ( ) ( ) ( )f x g x dx f x g x f x g x dx′ ′= −∫ ∫  

This rule is easier to remember if we use the language of differentials: letting ( )u f x=  and ( )v g x= , 

we can remember this rule as 

  

( ) ( ) [ ( ) ( )] ( ) ( )
u u v vdv du

f x g x dx f x g x g x f x dx′ ′= −∫ ∫
 

 

i.e., u dv uv v du= −∫ ∫ . 

 

For definite integrals, we have  
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[ ][ ( ) ( ) ( ) ( )] ( ) ( )
b b

aa
f x g x f x g x dx f x g x′ ′+ =∫  

from which follows 

[ ]( ) ( ) ( ) ( ) ( ) ( )
b bb

aa a
f x g x dx f x g x f x g x dx′ ′= −∫ ∫  

15.5.3 Example  To compute 1 ln x dx
x∫ , take lnu x= , 1dv dx

x
= .  Then 

(1/ )du x dx= , and lnv x= . 

    

( )


2

1ln

1ln( ) ln( ) (ln )

12 ln [ln( )]

u
dv

x dx u dv
x

uv v du

x x x dx
x

x dx x
x

  = 
 

= −

= −

=

∫ ∫

∫

∫

∫



 

Putting in the constant of integration, we have 21 1ln [ln( )]
2

x dx x C
x

= +∫ . 

 
15.5.4  Example  ln x dx∫ .  Let lnu x= , (1/ )du x dx= . Let dv dx= , v x= . 

Then   ln ln (1 / ) ln lnx dx x x x x dx x x dx x x x C= − = − = − +∫ ∫ ∫ . 

 

15.5.5 Example [SH 9.5.2(a)]  Find 
1

1
ln( 2)x x dx

−
+∫ .  

Let ( ) ln( 2)f x x= + , so that 1( )
2

f x
x

′ =
+

. Let ( )g x x′ = . 

 
Then 

( )

[ ]

1 21 12
1 1

1

1

1

1
2

1

1 1ln( 2) ln( 2)
2 2 2

1 1 4ln3 ln1 2
2 2 2
1 1 1ln3 2 4ln( 2)
2 2 2

1 1 1 1ln3 2 4ln3 2 4ln1
2 2 2 2
1 1ln3 4 4ln3
2 2

32 ln3
2

xx x dx x x dx
x

x dx
x

x x x

− −
−

−

−

+ = + −
+

= − − − +
+

 = − − + +  

    = − − + − + +        

= − − +

= −

∫ ∫

∫

 

 

~~~~~~~~~~~~~~~~~ 
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Despite the ability of the FTC to simplify the area problem, there are many functions ( )f x  have no 

closed form integrals, meaning that we cannot write down an explicit expression ( )F x  such that 

( ) ( )f x dx F x C= +∫ . 

For example, 
2

( ) xf x e−=  has no closed form integral. These have to be computed by approximation, 

in a manner similar to taking the Riemann sum for large enough n .  

 

15.6 Unbounded Intervals of Integration 

Consider the function ( ) xf x e λλ −= , 0λ > , [0, )x∈ ∞ . Although the value of the function is strictly 

positive for every x , we can sensibly speak of the area bounded by ( )f x , the x-axis, and the vertical 

line 0x = . This is so even though the area is not bounded on the right. It turns out that this area exists 

because ( )f x  falls towards zero “fast enough” as x  increases. 

 

How do we compute this area? 

We know that to compute the area bounded by ( )f x , the x-axis, and the vertical lines 0x =  and x a=

, 0a > , we would compute the definite integral 

0 0
( 1) (1 )

aa x x a ae dx e e eλ λ λ λλ − − − − = − = − − − = − ∫ . 

As we increase  a  the area bounded by ( )f x , the x-axis, and the vertical lines 0x =  and x a=  gets 

closer to the desired area  A.  So  A  is obtained by taking  

lim (1 ) 1a
a

A e λ−

→∞
= − =  

Note that not all such integrals can be evaluated. For instance, this process would have failed if we had 

applied it to the function ( ) 1/(1 )g x x= + , 0x ≥ . 

[ ] 00
1 / (1 ) ln(1 ) ln(1 )

a ax dx x a+ = + = +∫ , but ln a →∞  as a →∞ . 

One integral exists, while the other does not, even though both integrands converge to zero as x →∞ . 
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Integrals of Unbounded Functions 

Consider the function ( ) 1/f x x= .  This function increase without bound as 0x → .  Can we sensibly 

speak of the area under the curve and over the interval (0,1] .   

Suppose we first find, for 0 1h< < , the area  

11
1/ 2 2 2

h h
x dx x h = = − ∫ . 

As we take a sequence of  h values decreasing towards zero, we get closer to the area under the curve 

and over the interval (0,1] , and in fact, 

0lim 2 2 2h h+→ − = . 

Again there are some functions for which this procedure will not work, e.g., ( ) 1/g x x= . We have  

 [ ]1 11/ ln lnhh
x dx x h= = −∫ , but ln h− →∞  as 0h +→ . 

 
  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2
f(x)=2exp(-2x)

f(x)=2exp(-2x)

f(x)=2/(1+x)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5
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Exercises 
 

1.  (a)   Confirm that the following statement is correct, then give a corresponding integration formula: 
2

2
1

1

d xx
dx x

 + =   +
 

 

 (b)      Prove by differentiating :  3/2 2(1 ) 1

dx x C
x x

= +
− −

∫  

2. Evaluate:  

 (a)  2 dx∫  (b)  0 dx∫   (c)  2x dx∫   (d)  x dxπ∫  (e)  1 dx
x∫  

 (f)   3
1

2
dx

x∫  (g)  31 x x dx+ +∫  (h)  
4

2

2
x x dx+∫  (i)   

3

2
x y z dx+ +

∫  

 

3. Let ( )f x  and ( )F x  be such that ( ) ( )f x dx F x C= +∫ . Find ( )F x  if 

 (a)   2( )f x x= ,  (0) 2F =   (b)   
2

( ) 3
2
xf x x= + , (4) 1F = . 

 

4. Evaluate    (a) 
0 2
3
( 4 7)x x dx

−
− +∫  (b)  

2 2
1

(1 )x x dx
−

+∫  (c)  
2

61

1 dx
x∫  

 

5. Find the area between ( )f x  and the x -axis over the stated intervals: 

     (a) ( )f x x= , [0,9]      (b) 4( )f x x= , [ 1,1]−      (c) 2( ) 4 5f x x x= − − , [ 2,6]−  

 

6. Sometimes we want to differentiate integrals with respect to the limits. This is, of course, what the 

FTCs do: using Liebniz notation for derivatives, we can express FTC1 as:  

if f  is continuous on [ , ]a b , then ( ) ( )
x

a

d f t dt f x
dx

=∫ . 

(a) Show that 
( )

( )
( ) ( ( )) ( ) ( ( )) ( )

b x

a x

d f t dt f b x b x f a x a x
dx

′ ′= −∫  

(b) Find 
4

1

1

t

t

d dx
dt x− +
∫  

 

7. Find (a)   21

1
1

xd dt
dx t t+ +∫        (b)  

1
2

1
1x

d dt
dx t t+ +∫  (c)  

2

21

1
1

xd dt
dx t t+ +∫  
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8. Evaluate using integration by parts:  

 (a)   xxe dx−∫      (b) lnx x dx∫     (c)   
2

2
ln( 3)x dx

−
−∫  

 

9. Evaluate 2 1x x dx−∫  by 

 (a) substitution, with 1u x= − ; 

 (b) repeated integration by parts, choosing in turn 2u x= , u x= , 1u = . 

 Show that the two answers are the same. 

 

10. Evaluate 51
3( 8)

dx
x −∫  using an appropriate substitution. 

 

11. Evaluate  (a) 
1

0

1
1

dx
x−∫   (b) 

0
xe dx

∞ −∫  (c)  3x dx
∞

−∞∫  


