Mathematics for Economics Anthony Tay

13. L'Hopital's Rule

Derivatives are defined using limits. Here we have an application where derivatives are used to find limits.

L'Hopital's Rule for Limit at a Point Suppose we are interested in finding

$$
\lim_{x\to a}\frac{f(x)}{g(x)}
$$

but face the problem that $f(a) = g(a) = 0$, as for example, when we tried to find

$$
\lim_{h\to 0}\frac{e^h-1}{h}.
$$

L'Hopital's Rule v1

If (i)
$$
f(a) = g(a) = 0
$$
,

(ii) $f'(x)$ and $g'(x)$ both exist at a , and

(iii) $g'(a) \neq 0$,

then
$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.
$$

The rationale for L'Hopital's rule is simple: if $f(a) = g(a) = 0$, $f'(x)$ and $g'(x)$ exists at *a*, and $g'(a)$ $\neq 0$, then

$$
\frac{f(x)}{g(x)} = \frac{[f(x) - f(a)]/(x - a)}{[g(x) - g(a)]/(x - a)}.
$$

Taking limits gives us the right hand side as $\frac{f'(a)}{f(a)}$ $\left(a\right)$ *f a* g'(a ′ $\frac{a}{(a)}$.

Example 13.1 The limit of
$$
f(h) = \frac{e^h - 1}{h}
$$
 as $h \to 0$ is

$$
\lim_{h \to 0} \frac{e^h - 1}{h} = \frac{0}{0}, \quad = \lim_{h \to 0} \frac{e^h}{1} = 1.
$$

Example 13.2 $\lim_{x\to 1} \frac{x-1}{x^2-1}$ \rightarrow ¹ χ $\frac{-1}{-1}$ = " $\frac{0}{0}$ " = $\lim_{x\to 1} \frac{1}{2x}$ = $\frac{1}{2}$ 2 .

(*You didn't need to use L'Hopital's Rule here, but that doesn't mean you can't.*)

Mathematics for Economics 13-1

Example 13.3

432 3 2 2 4 6 88 lim*^x* 3 4 *xxxx* [→] *x x* − + −+ − + = " ⁰ 0 " = 3 2 2 2 4 12 12 8 lim*^x* 3 6 *xxx* [→] *x x* − +− [−] = " ⁰ 0 " = 2 2 12 24 12 lim*^x* 6 6 *x x* [→] *x* − + [−]⁼ 48 48 12 12 6 − + [−] = 2.

(*Nothing to stop you using L'Hopital's Rule twice if it continues to apply!*)

Example 13.4
$$
\lim_{x \to 1} \frac{x^2 + 3x - 4}{2x^2 - 2x} = \frac{0}{0} = \lim_{x \to 1} \frac{2x + 3}{4x - 2}.
$$

Note that

$$
\lim_{x \to 1} (2x + 3)/(4x - 2)
$$

does not have the " 0/0 " form, so you cannot apply L'Hopital's rule to this limit (why?). If you do you will get the wrong answer: differentiating numerator and denominator, you get $\lim_{x\to 1}(2/4) = 1/2$. The correct answer is

$$
\lim_{x \to 1} \frac{2x + 3}{4x - 2} = \frac{\lim_{x \to 1} (2x + 3)}{\lim_{x \to 1} (4x - 2)} = \frac{5}{2}.
$$

L'Hopital's Rule for Limits at Infinity The rule also works for the case where the "0/0" form appears when taking the limit as $x \to \pm \infty$, or if both $f(x) \to \pm \infty$ and $g(x) \to \pm \infty$:

L'Hopital's Rule v2

Suppose $f(x)$ and $g(x)$ are both differentiable for all $x \ge M$ for some real number M. Suppose $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = 0$. Then if $g'(x) \neq 0$,

$$
\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f'(x)}{g'(x)}
$$

Proof Let $x = 1/t$ (note that $x \to \infty$ as $t \to 0^+$). Then

$$
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{t \to 0^+} \frac{f(1/t)}{g(1/t)}
$$

=
$$
\lim_{t \to 0^+} \frac{f'(1/t)[-1/t^2]}{g'(1/t)[-1/t^2]}
$$

=
$$
\lim_{t \to 0^+} \frac{f'(1/t)}{g'(1/t)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}
$$

Example 13.5 [SH pg 264 Ex 4] Find $\lim_{x \to \infty} \sqrt[5]{x^5 - x^4 - x}$.

We have
$$
\lim_{x \to \infty} \sqrt[5]{x^5 - x^4} - x = \lim_{x \to \infty} x \sqrt[5]{1 - 1/x} - x
$$

$$
= \lim_{x \to \infty} x(\sqrt[5]{1 - 1/x} - 1)
$$

$$
= \lim_{x \to \infty} \frac{\sqrt[5]{1 - 1/x} - 1}{1/x}
$$

This has a " $\frac{0}{0}$ $\boldsymbol{0}$ " form. Using L'Hopital's rule, we have

$$
\lim_{x \to \infty} \frac{\sqrt[5]{1-1/x}-1}{1/x} = \lim_{x \to \infty} \frac{(1/5)(1-1/x)^{-4/5}(1/x^2)}{-1/x^2} = \lim_{x \to \infty} -(1/5)(1-1/x)^{-4/5} = \frac{1}{5}.
$$

L'Hopital's Rule for Limits for Other Indeterminate Forms Example 13.5 is also an example of how to deal with indeterminate forms of the type " $0.\infty$ ", such as $\lim_{x\to\infty} x(\sqrt[5]{1-1/x-1})$. Basically, rewrite the limit as a "0/0" type (or as a " ∞ / ∞ " type as below).

L'Hopital's Rule v3

Suppose $f(x)$ and $g(x)$ are both differentiable, with $\lim_{x\to a} f(x) = \pm \infty$, $\lim_{x\to a} g(x) = \pm \infty$, and $g'(x) \neq 0$, then

$$
\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}.
$$

Proof:

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{1/g(x)}{1/f(x)} = \lim_{x \to a} \frac{-g'(x)/[g(x)]^2}{-f'(x)/[f(x)]^2}
$$

$$
= \lim_{x \to a} \frac{g'(x)}{f'(x)} \left(\frac{[f(x)]}{[g(x)]}\right)^2 = \lim_{x \to a} \frac{g'(x)}{f'(x)} \left(\lim_{x \to a} \frac{[f(x)]}{[g(x)]}\right)^2
$$

This implies $\frac{1}{\lim_{x \to a} [f(x) / g(x)]} = \lim_{x \to a} [g'(x) / f'(x)]$ $= \lim_{x \to a} [g'(x)/f'$

Therefore $\lim_{x \to a} [f(x) / g(x)] = \lim_{x \to a} [f'(x) / g'(x)].$

Example 13.6 "Exponentials grow faster than powers"

What is the limit of x^p / a^x when $a > 1$ and $p > 0$? We have

$$
\lim_{x\to\infty}\frac{x^p}{a^x} = \frac{a\infty}{\infty},
$$

Rather than apply L'Hopital's Rule to lim *p* $x \rightarrow \infty$ α^x $\frac{x^p}{a^x}$, we rewrite this as

$$
\lim_{x \to \infty} \frac{x^p}{a^x} = \lim_{x \to \infty} \left(\frac{x}{a^{x/p}}\right)^p = \left(\lim_{x \to \infty} \frac{x}{a^{x/p}}\right)^p
$$

We have

$$
\lim_{x\to\infty}\frac{x}{a^{x/p}} = \frac{a\infty}{\infty},\quad \lim_{x\to\infty}\frac{1}{a^{x/p}(1/p)\ln a} = 0
$$

Therefore

$$
\lim_{x \to \infty} \frac{x^p}{a^x} = \left(\lim_{x \to \infty} \frac{x}{a^{x/p}}\right)^p = 0
$$

In other words, a^x grows faster than x^p for any $a > 1$, $p > 0$.

L'Hopital's Rule can also be applied to indeterminate forms of the type " 0^0 ", " ∞^0 ", " 1^∞ ". The trick is similar to logarithmic differentiation:

<u>Example 13.7</u> $\lim_{x \to 0^+} (1+x)^{1/x} = e$

Let $y = (1 + x)^{1/x}$. Taking logs on both sides gives

$$
\ln y = \ln(1+x)^{1/x} = \frac{\ln(1+x)}{x}
$$

Thus, $\lim_{x\to 0^+} \ln y = \lim_{x\to 0^+} \frac{\ln(1+x)}{x} = \lim_{x\to 0^+} \frac{1/(1+x)}{1} = 1$ $x \to 0^+$ and $x \to 0^+$ $x \to 0^+$ $x \to 0^+$ 1 $\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \frac{\ln(1+x)}{x} = \lim_{x \to 0^+} \frac{1/(1+x)}{1}$ $= \lim_{x \to 0^+} \frac{\ln(1+x)}{x} = \lim_{x \to 0^+} \frac{1/(1+x)}{x} = 1$.

Since $ln(lim_{x\to 0^+} y) = 1$, $lim_{x\to 0^+} y = e^l = e$.

Note that " 0^{∞} " is <u>not</u> an indeterminate form. Also, sometimes it is useful to transform the problem using functions other than the logarithmic function.

Some Comments on Indeterminate Forms When someone writes $\infty + \infty = \infty$, there is only one way to interpret the statement: this person is taking the limit of the sum of two objects, both of which are going to infinity (increases without bound), and the sum as a result also goes to infinity, as in

$$
\lim_{x\to 0}\left(\frac{1}{x^2}+\frac{1}{x^4}\right) = \infty + \infty = \infty.
$$

While, strictly speaking, you cannot do arithmetic with infinities, you can think of the above as a shorthand way of saying "because $1/x^2$ and $1/x^4$ both increase without bound, their sum also increases without bound". Similarly, you might encounter a statement like

$$
\lim_{x \to \infty} \frac{1 - 1/x}{x} = \frac{1}{\infty} = 0
$$

where again, a 'shorthand' is used.

However, note that only some shorthands work. For example,

$$
\begin{array}{ll}\n\text{``}\n\infty + \infty = \infty \text{''}, & \text{``}-\infty - \infty = -\infty \text{''}, & \text{``}1/\infty = 0 \text{''}, & \text{``}\n\infty / 1 = \infty \text{''}, \\
\text{``}\n0^{\infty} = 0 \text{''}, & \text{``}\n\infty^{\infty} = \infty \text{''}, & \text{``}\n\infty / 0 = \infty \text{''}, & \text{``}\n\infty, \infty = \infty \text{''}\n\end{array}
$$

are all fine in the sense that you will never find an $f(x) \to \infty$ and $g(x) \to \infty$ such that $f(x) + g(x)$ does not also $\rightarrow \infty$, for instance. Likewise, you will never find functions $f(x) \rightarrow 0$ and $g(x) \rightarrow \infty$ such that $f(x)^{g(x)}$ does not go to zero.

However, the following statements are wrong:

$$
^{\omega}\infty - \infty = 0
$$
", $\omega/\infty = 1$ ", $\omega/0 = 1$ ", $\omega/0 = 1$ ", $\omega/0 = 0$," $\omega/0 = 1$ ", $\omega/0 = 1$ ", $\omega/0 = 1$ ", $\omega/0 = 1$," $\omega/0 = 1$," $\omega/0 = 1$ "

These are all "indeterminate forms" and it is easy to show counterexamples:

$$
\lim_{x \to \infty} (x - x^2) = "\infty - \infty" \quad \text{but} \quad \lim_{x \to \infty} (x - x^2) = -\infty
$$

$$
\lim_{x \to \infty} (x^2 - x) = "\infty - \infty" \quad \text{but} \quad \lim_{x \to \infty} (x^2 - x) = \infty
$$

$$
\lim_{x \to \infty} (x^2 - x^2) = "\infty - \infty" \quad \text{but} \quad \lim_{x \to \infty} (x^2 - x^2) = 0.
$$

We saw in this section examples of a " $\infty - \infty$ " that converged to a non-zero finite number. Other examples:

$$
\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = "1^{\infty} = e, \qquad \lim_{x \to \infty} \left(1 + \frac{1}{x^2} \right)^x = "1^{\infty} = 1,
$$

$$
\lim_{x \to 0^+} x^x = "0^0 = 1, \qquad \lim_{x \to 0^+} x^{\left(\frac{\ln 2}{1 + \ln x} \right)} = "0^0 = 2.
$$

Exercises

1. Find the limits

(i)
$$
\lim_{x \to 1} \frac{\ln x}{1 - x}
$$
 (ii) $\lim_{x \to 3} \frac{x - 3}{3x^2 - 13x + 12}$ (iii) $\lim_{x \to 0} \frac{xe^x}{1 - e^x}$

(iv)
$$
\lim_{x \to 0^+} \frac{1 - \ln x}{e^{1/x}}
$$
 (v) $\lim_{x \to \infty} \frac{x^{100}}{e^x}$ (vi) $\lim_{x \to \infty} xe^{-x}$

(vii)
$$
\lim_{x \to \infty} \frac{e^{3x}}{x^2}
$$
 (viii)
$$
\lim_{x \to \infty} \frac{\ln x}{e^x}
$$
 (ix)
$$
\lim_{x \to \infty} (\sqrt{x^2 + x} - x)
$$

(x)
$$
\lim_{x \to \infty} \frac{\ln x}{x^n}
$$
 for any positive *n* (xi) $\lim_{x \to \infty} \frac{\ln(\ln x)}{\sqrt{x}}$

2. Find the error in the following calculation, and find the correct solution:

$$
\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x^3 - x^2} = \lim_{x \to 1} \frac{3x^2 - 2x + 1}{3x^2 - 2x} = \lim_{x \to 1} \frac{6x - 2}{6x - 2} = 1
$$

- 3. Find the limits
	- (i) $\lim_{x \to \infty} (1 3 / x)^x$ (ii) $\lim_{x \to 0} (e^x + x)^{1/x}$ (iii) $\lim_{x \to 0^+} x^x$