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12.   Linear Approximations   

Linear functions are very easy to work with. For instance, it is a lot easier to solve a set of linear 

equations, than to solve a set of nonlinear equations. Besides the applications we have seen so far, 

another application of derivatives is in obtaining ‘linear approximations’ to nonlinear functions.  
 

Suppose we are working with the function  

 2 1/ 2( ) (1 3 / 2 / 2)f x x x= + +  

and that we are interested in particular with the function 

for values of x  near 1x = .  
 

The fact that ( )f x  is differentiable at 1x =  means that for values of x  near 1x = , the tangent line to 

( )f x  at 1x =  is a good approximation to ( )f x . We call the tangent to ( )f x  at 1x =  the “linear 

approximation” to ( )f x  at the point 1x = , and if we are only interested in the function around the 

neighborhood of 1x = , this approximation may be sufficient for our purposes. That is, it might be 

sufficient for us to work with the tangent, rather than the original function.  From the figure above, it 

appears that the tangent to the function at 1x =  is a good approximation to the actual function for a 

fairly large neighborhood around that point.  

What is the formula for the tangent? Let ( )p x a bx= +  represent the tangent to a function 

( )f x  at the point 0x x= . This tangent can be defined as the line that satisfies  

(i) 0 0( ) ( )p x f x=   and  (ii) 0 0( ) ( )p x f x′ ′= . 

That is, the value of the tangent at 0x  is the same as the value of the function at 0x , and the slope of the 

tangent at 0x  is the same as the slope of ( )f x  at 0x . We have 

0 0 0( ) ( )p x a bx f x= + =   and  0 0( ) ( )p x b f x′ ′= =  

Solving for a  and b , and substituting into ( )p x a bx= +  gives 

0 0 0( ) ( ) ( )( )p x f x f x x x′= + − . 

In other words, ( )p x  is a line with slope 0( )f x′  and passes through the point 0 0( , ( ))x f x . Therefore  

0
0

0

( ) ( ) ( )p x f x f x
x x
− ′=
−
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which gives the same formula. 

 

Example 12.1  Find the linear approximation of  

( ) (1 )mf x x= +  at 0x = .  

We have (0) (1 0) 1mf = + = . Also, 1( ) (1 )mf x m x −′ = + , so (0)f m′ = . Therefore the linear 

approximation at 0x =  is 

( ) (0) (0)( 0) 1p x f f x mx′= + − = + . 

Consider the case 1 / 3m = . For values of x  near 0, the tangent at 0x =  gives good approximations to 

the actual function around that point:  

(i) 3 1.1 1.032280115456367...= . Using the linear approximation ( )p x  with 1/ 3m =  and 

1/10x =  gives 1 (1/10) / 3 1 1/ 30 1.03+ = + =  . 

(ii) 3 1.01 1.003322283542089...= . Using the linear approximation ( )p x  with 1/ 3m =  and 

1 /100=x  gives 1 (1 /100) / 3 1 1/ 300 1.003+ = + =  . 

 

Example 12.2  Find an approximate value for 37 . 

Because 37 36 1 6 1 1/ 36= + = +  , we can use the result in Example 12.1.1. We have 

6 1 6 ( ) 6(1 / 2)x p x x+ ≈ = + . At 1/ 36x = ,  we have 

 37 6(1 (1 / 36) / 2) 6 1 /12 6.083≈ + = + =  .  

The actual value is 37 6.082762530298219...=  
 

Exercise  Find the linear approximation of the function  

2 1/ 2( ) (1 3 / 2 / 2)f x x x= + +  at the point 1x = . 

The following is an application from statistics.  

Example 12.3  Recall from elementary statistics that if X  is a random variable with some mean 

and variance, then the variance of aX b+  is simply 2var[ ] var[ ]aX b a X+ = . The variance of more 

complicated function of X  is more difficult to derive, for example, what is the variance of  
2 1/2( ) (1 3 / 2 / 2)f X X X= + + ? 

Taking the linear approximation of ( )f X  around a suitable point simplifies the problem substantially.  
 
 



Mathematics for Economics 
Anthony Tay 

 

12-3 

Differentials The idea of linear approximations can be expressed in terms of changes. Let ( )y f x=  

be the function to be approximated. Consider a small change in x  from 0x x=  to 0x x dx= + . The 

actual change in f  is 0 0( ) ( )f x dx f x+ − . Suppose we wish to use the linear approximation to the 

function at 0x  to approximate this change. This approximate change would be 0 0( ) ( )p x dx p x+ − . We 

have 

0 0 0 0 0 0 0 0 0 0

0 0 0

0

( ) ( ) [ ( ) ( )( )] [ ( ) ( )( )]
[ ( ) ( ) ] [ ( )]

( )

p x dx p x f x f x x dx x f x f x x x
f x f x dx f x

f x dx

′ ′+ − = + + − − + −
′= + −

′=

 

For small values of dx  we can expect 0 0( ) ( )p x dx p x+ −  to be a good approximation to 

0 0( ) ( )f x dx f x+ − . We denote the linear approximation to the actual change as “ df  ”, and write  

   0 0 0( ) ( ) ( )df p x dx p x f x dx′= + − =   

We can apply this argument to any x , and so we can write in general 

( )df f x dx′=  

The symbols ‘ df ’ and ‘ dx ’ are called the differentials of f  and x  respectively. If we write the 

function as ( )y f x= , we can write ( )dy f x dx′= .  

 

Example 12.4  For 1/3( ) (1 )= +f x x , we have 2/3( ) (1 / 3)(1 )−′ = +f x x . The differential is thus 

     
2
31( ) (1 )

3
df f x dx x dx

−
′= = +  

E.g., for a small change in x  from 0=x  to 0.01=x , the linear approximation to the change in the 

value of ( )f x  would be (0) 0.01 (1 / 3)(0.01) 0.03′ = = f .  

 

Example 12.5  The volume of a sphere of radius r is 34
3( )V r rπ= , and 2( ) 4V r rπ′ = . The 

differential is therefore 
24dV r drπ=  

If radius increases from 2 to 2.03, the linear approximation to the change in volume is  





24 (2) 0.03 1.508
drr

dV π= = .  

The actual change in volume is 3 34 4
3 3(2.03 ) 2 1.531π π− = . 
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Differentials vs Derivatives  The derivative of a function, and the differential of a function are 

intimately related, but they are not the same thing. The derivative of a function tells us the slope of the 

function at any given point. It is a function of x .  The differential is a formula for computing linear 

approximations to actual changes in f  for a given change in x  by dx . It is a function of x  and dx . 

The formula for the differential ( )dy f x dx′=  can be viewed as the reason behind the /dy dx  

notation for derivatives (which is sometimes called Liebniz’s notation for the derivative). Note, 

however, that we use the derivative to define the differential, not the other way around.  

Although the two are different objects, the equations / 2dy dx x=  and 2dy x dx=  nonetheless 

do contain the same information about the function. Sometimes differentiation is done in the language 

of differentials. For instance, you might see a statement like 

“differentiating 2 exp( )y x x=  gives (2 ) exp( )= +dy x x x dx .” 

We will revisit all this later, when we discuss derivatives and differentials for functions of many 

variables. 
 

Quadratic Approximations  Suppose we try to approximate f  near x a=  using a quadratic 

function instead of a linear function. Suppose we choose that quadratic function ( )q x  such that 

(i)   ( ) ( )q a f a= ,  (ii)   ( ) ( )q a f a′ ′= , and   (iii)   ( ) ( )q a f a′′ ′′=  

We would usually write quadratic equations in the form  
2

1 2 3( )q x c x c x c= + + . 

However, for this purpose, it is convenient to use an alternative form:  
2( ) ( ) ( )q x A x a B x a C= − + − + .  

The two are equivalent, since  

      

2

2 2

2 2

( ) ( ) ( )
( 2 ) ( )

( 2 ) ( )

= − + − +

= − + + − +

= + − + − +

q x A x a B x a C
A x ax a B x a C
Ax B Aa x Aa Ba C

 

The benefit of the alternate form for our application will be obvious from the following computations. 

We want to find A , B , and C . We have   

     ( ) 2 ( )q x A x a B′ = − +  and  ( ) 2q x A′′ = ,  
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which gives    (i)  ( )q a C= ,   

   (ii)  ( ) 2 ( )q a A a a B B′ = − + =  , and   

   (iii) ( ) 2q a A′′ = . 

Therefore  ( )C f a= , ( )B f a′= , and 2 ( )A f a′′= , i.e., ( ) / 2A f a′′= . The desired quadratic 

approximation is therefore 

2( )( ) ( ) ( ) ( )( ) ( )
2

f af x q x f a f a x a x a
′′

′≈ = + − + − . 

We call this the second order Taylor polynomial approximation of ( )f x  at x a= . 
 

Example 12.6  Find the quadratic approximation of ( ) (1 )mf x x= +  at 0x = .  

We have  (0) (1 0) 1mf = + = ;  

  1( ) (1 )mf x m x −′ = + , so (0)f m′ = ; and  

2( ) ( 1)(1 )mf x m m x −′′ = − + , so  (0) ( 1)f m m′′ = −  

Therefore the quadratic approximation at 0x =  is 

2 2(0) ( 1)( ) (0) (0)( 0) ( 0) 1
2 2

f m mp x f f x x mx x
′′ −′= + − + − = + +  

For values of x  near 0, this gives good approximations: 

(i) 3 1.1 1.032280115456367...= . Using the quadratic approximation ( )p x  with 1/ 3m =  and 

1/10x =  gives 1 (1/ 3)(1/10) (1/ 3)( 2 / 3)(1/ 2)(1/100) 1.032+ + − =  . 

(ii) 37 6.082762530298219...=   Because 37 36 1 6 1 1/ 36= + = +  , we can use the quadratic 

approximation ( )p x  for 1 1/ 36+  with 1/ 2m =  and 1/ 36x = , this gives 

 
237 6[1 (1 / 36)(1 / 2) (1 / 2)( 1 / 2)(1 / 2)(1 / 36 )]

6.082754629629629...
≈ + + −
=

. 

Example 12.7  Let ( )y f x=  be some function. Consider a small change in x  from 0x x=  to 

0x x x= + ∆ . The actual change in f  is 0 0( ) ( )f x x f x+ ∆ − . Suppose that instead of computing the 

actual change in f , we use the quadratic approximation 0 0( ) ( )q x dx q x+ −  as an approximation to the 

actual change. We have 

20
0 0 0 0 0 0 0 0 0

20
0

( )( ) ( ) [ ( ) ( )( ) ( ) ] ( )
2

( )( ) ( )
2

f xq x x q x f x f x x x x x x x f x

f xf x x x

′′
′+ ∆ − = + + ∆ − + + ∆ − −

′′
′= ∆ + ∆

 



Mathematics for Economics 
Anthony Tay 

 

12-6 

This is the “quadratic version” of the differential. If we denote this 0 0( ) ( )q x x q x+ ∆ −  by f∆  or y∆ , 

we have 

Function     ( )y f x=  

  Linear approximation  ( )df f x dx′=  

  Quadratic approximation 2( )( ) ( )
2

f xy f x x x
′′

′∆ = ∆ + ∆  

 

Taylor Series It is straightforward to extend all this further. For example, we can use a cubic 

polynomial approximation to the function f near x a=  by choosing a function ( )p x  such that  

(i)   ( ) ( )p x f a=  when x a= ,  

(ii)   ( ) ( )p x f a′ ′=  when x a= ,   

(iii)  ( ) ( )p x f a′′ ′′=  when x a= , 

(iv)  ( ) ( )p x f a′′′ ′′′=  when x a= . 

Following an argument similar to previous sections, we get the equation ( )p x  to be 
(3)

2 3( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
2 3!

f a f af x p x f a f a x a x a x a
′′

′≈ = + − + − + −  

We call this the third order Taylor polynomial approximation of ( )f x  at x a= .  

If we repeat this process n times we get  
(3) ( )

2 3( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ... ( )
2 3! !

n
nf a f a f af x f a f a x a x a x a x a

n
′′

′≈ + − + − + − + + −  

This is called the  nth-order Taylor polynomial approximation of ( )f x  at a. 

It can be shown (but we won’t do it!) that the difference between f(x) and the n-th order Taylor 

approximation is  
( 1)

1
1

( )( ) ( )
( 1)!

n
n

n
f cR x x a
n

+
+

+ = −
+

 

where c is a number between x and a . In other words, we can write  

(3)
2 3

( ) ( 1)
1

( ) ( )( ) ( ) ( )( ) ( ) ( ) ...
2 3!

( ) ( )... ( ) ( )
! ( 1)!

n n
n n

f a f af x f a f a x a x a x a

f a f cx a x a
n n

+
+

′′
′= + − + − + − +

+ − + −
+

 

for some number c  between x  and a , as long as the first 1n +  derivatives exist.  
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An aside: the special case of the above with 0n = is called the Mean-Value Theorem:  

( ) ( ) ( )( )′= + −f x f a f c x a  for some c  between x  and a . 

Rewriting slightly, we have  

( ) ( )( ) −′ =
−

f x f af c
x a

 for some c  between x  and a . 

This says that there is some point c  between x  and a  such that the slope of the function at c  is equal 

to the slope of the line joining the two points ( , ( ))x f x  and ( , ( ))a f a . 

We can use the expression  
( 1)

1
1

( )( ) ( )
( 1)!

n
n

n
f cR x x a
n

+
+

+ = −
+

  

gives us some idea about the size of the approximation error: 

 

Example 12.8  For the function ( ) (1 )mf x x= + , the linear approximation at 0=x  was found to be 

( ) 1 / 3p x x= + . The remainder term is  

2
2

( )( ) ( 0)
2
′′

= −
f cR x x   

for some c  between x  and 0. Since 5/31 2( ) (1 )
3 3

− ′′ = − + 
 

f x x , this works out to  

5/3 2
2

1( ) (1 )
9

−= − +R x c x .  

For x  close to zero, c  will also be very small, so 5/3(1 )−+ c  should be close to one. So, for instance, for 

0.1=x  the error is approximately 1 / 900− . 
 

Example 12.9  Let ( ) xf x e= . Then ( ) ( )n xf x e=  for all n. The n-th ordered linear approximation 

for ( )f x  around the point 0=x  is 

(3) ( )
2 3

2 3

(0) (0) (0)(0) (0) ...
2 3! !

1 1 11 ...
2 3! !

n
x n

n

f f fe f f x x x x
n

x x x x
n

′′
′≈ + + + + +

= + + + + +
. 

One application of this result is an approximation for the number e . Evaluating the equation at 1=x  

gives  
1 1 11 1 ...
2 3! !

e
n

≈ + + + + + . 



Mathematics for Economics 
Anthony Tay 

 

12-8 

How accurate is the approximation? Or, to turn the question around a little, suppose we wish 

approximate the number e  accurate to 5 decimal places. Then, what order approximation should we 

use? The error for the n -th order approximation is  
( 1)

1 1
1

( )( ) ( 0)
( 1)! ( 1)!

+
+ +

+ = − =
+ +

n c
n n

n
f c eR x x x
n n

 

for some c  between 0 and x . Because we are evaluating the approximation at 1=x  specifically, this 

is   

1(1)
( 1)!+ =
+

c

n
eR

n
. 

But xe  is an increasing function, and 0 1< <c , so the largest value for the error is 

( 1)!+
e

n
  . 

This may not appear terribly useful, because it uses e , which is what we’re trying to approximate in 

the first place, but we know 3<e , so we know the error is less that 3 / ( 1)!+n . For instance, to make  

3 0.000005
( 1)!n

<
+

,  

we require, ( 1)! 3 / 0.000005 600,000n + < = , which gives 9n > . We should take at least 10 terms. For 

any fixed x the final term goes to zero when we take the limit n →∞ . Thus, 

2 31 1 11 ... ...
2 3! !

x ne x x x x
n

= + + + + + +  

When x = 1, we get the infinite expansion  

1 1 11 1 ...
2! 3! 4!

e = + + + + +  

 

Taylor’s Series / Maclaurin’s Series  If we continue the process of taking higher and higher 

approximations, we ‘end up’ with the infinite series 

(3)
2 3

( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ...
2 3!

( )... ( ) ...
!

n
n

f a f af x f a f a x a x a x a

f a x a
n

′′
′= + − + − + − +

+ − +
 

This expansion is called the Taylor series. When a is set at zero, it is called the Maclaurin series. These 

are infinite series representations of functions. 
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Exercises 

1. Let ( )y f x x= = .  

(a) Find the differential of ( )f x . 

(b) Compute (1.1) (1)y f f∆ = − . Compute (1)dy f dx′=  for 0.1dx = . What is the error 

when using dy  to approximate y∆ . 

(c)   Find the linear approximation to ( )f x  about 1x =  (i.e., find the equation of the tangent 

line to the function ( )f x  at 1x = .) Draw, in a single diagram, both the function and the 

tangent line at 1x = . Mark out in your diagram x∆ , y∆ , and dy  from part (b) (i.e., I am 

asking you to draw a diagram similar to Figure 2 of pg 218 of your textbook.) 

(d) Compute (9.1) (9)y f f∆ = − . Compute (9)dy f dx′=  for 0.1dx = . What is the error 

when using dy  to approximate y∆ .  

(e)   Find the linear approximation to ( )f x  about 9x =  (i.e., find the equation of the tangent 

line to the function ( )f x  at 9x = .) Draw in a single diagram both the function and the 

tangent line at 9x = . Mark out in your diagram x∆ , y∆ , and dy  from part (d)  

(f) Find the quadratic approximation to ( )f x  at 1x =  and at 9x = . 

2. Find the first, second, third and fourth order approximations to the function 

3 2( ) 2 2 1f x x x x= + + +  

at 0x x= . 

3. Show that the linear approximation to 5( ) 1 / (1 2 )f x x= +  about 0x =  is 1 10x− . 

4. Write  
2 31 1 11 ... ...

2 3! !
x ne x x x x

n
= + + + + + +  

using summation notation (remember that 0! 1=  by definition). Show that 
1

1
!

i

i
e

i
λ λ∞

−

=

=∑ .  


