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Mathematics for Economics             Anthony Tay 

11. Single Variable Optimization  

The objective here is to develop methods for finding points at which a function achieves its maximum 

value or its minimum value. Many problems in economics take this form: utility maximization, profit 

maximization, etc.  The following example provides an outline of the kind of problem to be solved. 

 

Example 11.1  A firm has a production function ( )F K  which shows how much of its product is 

produced at various levels of capital K . The firm is a price taker and faces per unit price p  for its 

product, and its cost function is ( )C K . 

 

The firm’s profit function is ( ) ( ) ( )K pF K C Kπ = − . It chooses levels *K  of capital to maximize its 

profits. We call the firm’s profit function the objective function. The variable K  is choice 

variable. The “variable” p  is a parameter of the problem. For this maximization problem it is 

taken to be a fixed value. 

Qn: What is the firm’s optimal choice of K ?  

Qn: What is the firm’s profit at the optimal choice of K ? 

 

Let the optimal choice of K  be denoted *K . This depends on the parameter p . For a given fixed value 

of p , *K  is constant. However, the usefulness of a theory often lies in questions such as  

Qn: How do the firm’s optimal choice change as p  changes? 

The firm’s profit level at the optimum is * *( )Kπ π= . This also depends on p . 

Qn: How does a profit maximizing firm’s profit change as p  changes? 

The objective here is to help you acquire the tools for answering such questions. 

 

We begin with the simplest case, where the objective function is a function of one variable only, and 

where in many cases there are no parameters, so that the solutions are numerical constants, as in the 

example that follows. 
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Example 11.2  What is the minimum value of ( ) xf x e x= − , and at what value of x  does it occur? 

(answer: min. value of ( )f x  is 1, and is obtained when 0x = ). 

 

We will use simple examples like this to help us understand the definitions and concepts involved in 

maximization/minimization problems. We then proceed to more sophisticated problems, first including 

parameters (this chapter) then extending to multivariate contexts without constraints and with 

constraints (later chapters). 

Before getting to definitions and methods directly related to optimization, we first mention a 

few terms regarding sets of real numbers. Let ( , )a b  denote the set of all real numbers x  such that 

a x b< < . We refer to this as an “open interval”. The points a  and b  are called boundary points. A set 

is closed if it contains all of its boundary points. Therefore [ , ]a b , the set of all real numbers x  such 

that a x b≤ ≤ , is a “closed interval”. The set [ , )a b  is neither open or closed. The entire real line 

( , )−∞ ∞  is an open interval, because it doesn’t contain its end points. [It is also a closed interval! It is 

“automatically” closed since there are no boundary point for it to contain. The entire real line, as an 

interval, is unusual in that it is both open and closed.]  

 

Definitions   

Consider a function f defined over domain D . The point 0x  is a global maximum point of f  if  

0( ) ( )f x f x≤  for every x D∈  

The value 0( )f x  is called the maximum value of the function. The point 0x  is a strict global 

maximum point for f  if 

0( ) ( )f x f x<  for every x D∈ , 0x x≠ . 

The value 0( )f x  is called the strict maximum value of the function. 
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Example 11.3  Take the domain to be . There is a 

strict global maximum point at 1.5x = . 
 
 
 
 
 
 
 
 

Example 11.1.2  Take the domain to be . There are 

many global maximum points (all points x  from 1.5 to 

3 are maximum points.) 
 
 
 
 

The definition of minimum points is similar, with obvious changes: 

 

The point 0x  is a minimum point for f  if 0( ) ( )f x f x≥  for every x D∈ . The value 0( )f x  is called 

the minimum value of the function. The point 0x  is a strict minimum point for f  if  

0( ) ( )f x f x>  for every x∈D, 0x x≠ . The value 0( )f x  is called the strict minimum value of the 

function. 

 

When we do not need to distinguish between a minimum point or a maximum point, we can simply call 

such points optimal points, and their corresponding functions values as optimal values. 
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Local vs Global Optimal Points 

Given a function  f  defined over D, the point 0x D∈  is a local maximum point if there is an open 

interval 0 0( , )x xε ε− + , 0ε > , such that 

0( ) ( )f x f x≤  for every 0 0( , )x x xε ε∈ − + . 

The value 0( )f x  is called a local maximum value of the function. Local minimums are defined in 

a similar manner. 
 
 

Example 11.4    The point x c=  is a local maximum point. 

Note that all global maximums are by definition also local 

maximums, so the points x a=  and x b=  are, strictly 

speaking, also local optima.  
 

Our objective will be to develop methods to find optimum points, and to characterize them as 

maximums or minimums, global or local, unique or not, etc.  We will be presenting several different 

methods, none of them perfect. All apply only in given circumstances, and you will need to know how 

to adapt when those circumstances are not met. Also, depending on the function to which a method is 

being applied, the method may give you a less-than-complete answer, compared to when it is applied 

to other functions.  

Optimization is a skill that cannot be fully automated – many tools are available, but the 

application of the tools and the interpretation of the results require thought. 

 

First Order Condition for (Local or Global) Optima   

From the examples, one will suspect that the first derivative of  f  has a role to play in finding optimal 

points, as all the optimal points in the examples satisfy ( ) 0f c′ = . In fact, the following is true:  

Necessary “First-Order” Condition    Suppose f  is defined over an open interval I  and is 

differentiable over I . Then, 

0x  is an optimum point in I   ⇒  0( ) 0f x′ = . 

We call 0x  a stationary point. 
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It is easy to justify this argument. Intuitively, if 0( ) 0f x′ >  or 0( ) 0f x′ < , then we can increase or 

decrease the value of the function by simply increasing or decreasing 0x  respectively.  

 

Further discussion of the First-Order Condition  First, what does it mean for the first-order 

condition to be a necessary (but not sufficient) condition? “Necessity” means that if all the conditions 

of the theorem are met, then all optimal points 0x  will have the property that 0( ) 0f x′ = . Finding all 

the points such that satisfy 0( ) 0f x′ =  will then pick out all the optimum points. However, 0( ) 0f x′ =  

is not sufficient to guarantee that 0x  is an optimum point; there may be points that may satisfy 

0( ) 0f x′ =  but that are not optimum points. In particular, certain inflection points can also satisfy 

0( ) 0f x′ = .  
 

Example 11.5  Why is the FOC not sufficient? 

Because the candidate optimal point might be an inflection 

point. In example on the right, the domain is . We have 

(3) 0f ′ = , but 3 is clearly not an optimal point.  In fact, 

there are no optimal points. 
 
 

Nonetheless, the FOC remains a very useful tool, because it helps us narrow down the set of ‘candidate 

points’, which we can then sort through using other tools. For example, suppose we are trying to find 

the optimum points of the function  
2

4

2( )
1

xf x
x

=
+

, x∈   

We note this function is defined for all x  , i.e., the function is defined over the open interval ( , )−∞ ∞ , 

and is differentiable over the entire interval. The first derivative is 
 

2

4 2

4 (1 )(1 )(1 )( )
( 1)

x x x xf x
x

+ + −′ =
+

, 

so the point 1x = − , 0, and 1, satisfy ( ) 0f x′ = . These three points are therefore candidate optimum 

points.  
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  Our analysis up to this stage cannot say more about the points. Some of the points may be max, 

or min, or neither. But we have reduced the problem substantially, since we know that all other points 

are not optimum points.  

It is also essential to remember that the FOC works well only when the function is defined over 

an open interval, and is differentiable over that open interval. In particular, the FOC does not apply to 

boundary points, and points of non-differentiability. The following example illustrates what can happen 

when either of the two conditions are not met. 

 
Example 11.6  Why did we require  I  to be open? 

Consider an example where f  is not defined over an 

open interval.  Here 

( ) ( 1)( 2)( 3)f x x x x= − − +  

with [ 5,5]x∈ − .  The FOC picks out the two (local) 

optimum points, but misses the global max and min 

which occur at 5 and −5 respectively. Note that if this 

function was defined over ( 5,5)− , then we would not 

have this problem, since 5x = −  and 5x =  would no 

longer be optimum points. 
 

Example 11.7  Why must  f  be differentiable over 

the interval?  In the example on the right, there is a 

strict maximum at 3x = . However, (3) 0f ′ ≠ . In fact, 

the function is not differentiable at this point. The FOC 

would have missed this point. 
 

 

The problem is that (i) the optimum point might occur at a boundary point, and (ii) the optimum point 

might occur at points of non-differentiability, but the first-order condition applies only at interior points 

that are also differentiable. 
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We next turn to the next steps after finding the candidate optimum points via the FOC. Several methods 

are presented. Remember, when you would use one method over another depends on the situation.  

 

The Extreme Value Theorem The first method, in fact, deals with the case where the function is 

defined over a closed interval. 

 

Theorem (The Extreme Value Theorem)  Suppose f  is a continuous function defined over a closed 

and bounded interval. Then there is a point 1 [ , ]x a b∈  that is a global maximum point, and a point 

2 [ , ]x a b∈  that is a global minimum point. 

(Proof omitted.) 

 

This theorem says that if the domain of the function is a closed and bounded interval, and if the function 

is continuous over this domain, then a global minimum and a global maximum will exist. The fact that 

the global maximum and global minimum exists is very helpful. If we know the global max and global 

min exists, then the discussion in the previous section suggests that the following steps lead you to 

them: 

1. Find all the points 0x  such that 0( ) 0f x′ =  and compute the value of the function at these points. 

2. Find all the points where the function is not differentiable, and compute the value of the function at 

these points.  

3. Find ( )f a  and ( )f b , the value of the function at the boundary points.   

4. Compare the value of the function at all of these points. The point with the largest function value is 

the global maximum point, and the point with the lowest function value is the global minimum 

point. 

 

Example 11.8  Let  
2 4 4( )

1 | 1|
x xf x

x
− +

=
+ −

 , [0,5]x∈ . 

 Find the global maximum and global minimum points.  
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This function is easier to deal with than it first appears. Notice that the denominator is always greater 

than zero, so the function is defined at all points in its domain (in fact defined everywhere, but we are 

only interested in the function over the stated domain). There is on obvious point of non-

differentiability, that is at 1x = . The function is differentiable everywhere else. The value of the 

function at the boundary points are  

(0) 2f =  and 
25 4(5) 4(5) 9 / 5
1 | 5 1|

f − +
= =

+ −
.  

Over the interval (0,1) , we have  
2 2 24 4 4 4 4 4( ) 2

1 | 1| 1 1 2
x x x x x xf x x

x x x
− + − + − +

= = = = −
+ − + − −

,  

so ( ) 1f x′ = − , and there are no points over (0,1)  such that ( ) 0f x′ = . 

The function is not differentiable at 1x = . At this point,   

1 4 4(1) 1
1

f − +
= =    

  
Over the interval (1,5) , the function is  

2 24 4 4 4 4( ) 4
1 | 1| 1 1
x x x xf x x

x x x
− + − +

= = = − +
+ − + −

 .  

The first derivative is  

2

4( ) 1f x
x

′ = − ,  

so ( ) 0f x′ =  at the point 2x = , with (2) 0f = .  

 

Comparing (0) 2f = , (1) 1f = , (2) 0f = , and 

(5) 9 / 5f =  we find that the global maximum point 

occurs at the boundary point 0x =  with (0) 2f = , and 

the global minimum occurs at the (interior, 

differentiable) point 2x =  with (2) 0f = .  The 

function is plotted for you on the right. 
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Example 11.2.2 (revisited)  Let  

( ) ( 1)( 2)( 3)f x x x x= − − + , with [ 5,5]x∈ − .   

For this example, using the procedure outlined above, 

you will find two interior stationary points [points 

where ( ) 0f x′ = ]. Comparing the value of the function 

at these points with the value of the function at the 

boundary, you will come to the conclusion that the 

global min occurs at 5x = −  and the global max occurs 

at 5x = .   

 

Notice that this method will be silent on the two interior stationary point. It cannot tell you that the 

points x a=  and x b=  in the figure are local max and local min respectively.  

For the extreme value theorem to guarantee the existence of a global min and a global max, we 

must have f  to be continuous, and the domain to the closed and bounded. If f is  not continuous, or 

the domain not closed and bounded, (or both), then the either the global min, or the global max (or both) 

might not exist (they might exist, or they might not).   

Suppose the function above was defined over ( 5,5)− . Then there are no global maximum and 

global minimum points. Using the procedure above, you would have identified two points x a=  and 

x b=  as candidate points, and determined by comparing values that x a=  is the global maximum, 

and x b=  is the global minimum point. This would be incorrect. They are merely local optima. 

The next example shows what might happen if ( )f x  is not continuous. 

 

Example 11.9  Let  
2

2

4 2, 0 2
( )

4 5, 2 5
x x x

f x
x x x

 − + ≤ ≤
= 

− + < ≤
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This function is defined over the closed and 

bounded interval [0,5]  but it is not 

continuous. The global minimum still exists 

(at 5x = ), and the procedure described above 

will pick this out. However, the procedure 

will have picked out 2x =  as the global 

maximum point. This would be incorrect. 

The point 2x =  is not a global maximum 

point (it is not even a local minimum point). The problem here is, as it turns out, that a global maximum 

point does not exist. 

 

We return to differentiable functions defined over open intervals.  

 

The First Derivative Test  We can use the first derivative more extensively to get further 

information about the nature of any stationary points. 

The First-Derivative Test for Optima Suppose f  is defined on an open interval I  and is 

differentiable on I .  Let 0x  be a stationary point. 

(a)  If ( ) 0f x′ ≥  for all x  in I  such that 0x x≤ , and  ( ) 0f x′ ≤  for all 0x x≥ , then 0x  is a 

maximum point over the interval I . 

 (b)  If ( ) 0f x′ ≤  for all x  in I  such that 0x x≤ , and ( ) 0f x′ ≥  for all  0x x≥ , then 0x  is a 

minimum point over the interval I . 

If the interval I  is the entire domain of the function, then 0x  is a global optimum. If the interval I  is 

some small interval centered at 0x , then the condition guarantees 0x  is a local optimum. If the 

inequalities are changed to strict inequalities, the optima are strict. If the sign does not change across a 

stationary point, you have an inflection point. 
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Example 11.10  Let 2( ) 5 4x xf x e e= − + , x∈.  

Then  2( ) 2 5 (2 5) 0x x x xf x e e e e′ = − = − =  when 2 5 0xe − = , i.e., ln(5 / 2)x =  is a stationary point. 

Furthermore, xe  is always positive, and 2 5xe −  is increasing, therefore ( ) 0f x′ <  for all ln(5 / 2)x < , 

and ( ) 0f x′ >  for all ln(5 / 2)x > , so ln(5 / 2)x =  is a strict minimum point. 
 
 
Example 11.11  Let  

2

4

2( )
1

xf x
x

=
+

, 

then 
2

4 2

4 (1 )(1 )(1 )( )
( 1)

x x x xf x
x

+ + −′ =
+

. We have the following “sign” diagram 

 
---------- 1−  ------------ 0 -------------- 1+  --------------- 

 4x      −        −       +    + 
 (1 )x+     −    +      +    + 
 (1 )x−     +   +      +    −   
 ( )f x′     +   −       +    −  
 

so 1x = −  and 1x =  are local maximums, and 0x =  is a local minimum of ( )f x . Note that this analysis 

does not say that the stationary points are not also global optima. In fact, the stationary points here are 

also global minimums. To show this requires further argument, however. The first derivative test here 

guarantees only local minimization.  

 

Maximum/Minimum for Concave/Convex Functions   The class of concave and convex functions are 

much easier to deal with. Recall that for twice-differentiable functions 

f  is convex on an interval I     ⇔    ( ) 0f x′′ ≥  for all x  in I  

f  is concave on an interval I    ⇔    ( ) 0f x′′ ≤  for all x  in I  

( ) 0f x′′ >  for all x  in I    ⇒   f  is strictly convex on an interval I     

( ) 0f x′′ <  for all x  in I    ⇒   f  is strictly concave on an interval I   

 

If 0( ) 0f x′ = , and ( ) 0f x′′ ≥  for all x  in some interval I , i.e., ( )f x′  is non-decreasing over the 

interval, then it must be that ( ) 0f x′ ≥  for all 0x x>  in I , and ( ) 0f x′ ≤  for all 0x x<  in I . In other 

words, 0x  is a minimum over the interval I .  
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A similar argument shows that if 0( ) 0f x′ =  for 0x I∈ , and ( ) 0f x′′ >  over I , then we have a strict 

minimum over the interval I . 

 

Example 11.12  Let 1( ) xf x e x−= − . Then  
1( ) 1 0xf x e −′ = − =  when x = 1 , and    
1( ) 0xf x e −′′ = >  for all x .   

Therefore, ( )f x  is strictly convex, and  x = 1 is a strict global minimum point. 

 

There are times when it is easier to use the first derivative test to find maximum and minimum points 

(such as when the function’s second derivative is messy, or when the function is not twice differentiable 

everywhere). At other times, it is easier to use second derivative (such as in Example 11.12). Note, 

however, that many economics problem fall into the latter category. Also, it is often easier to use the 

second derivative if our intention is to characterize an optimum point, rather than to find its value.  

Economists often call the condition that 0( ) 0f x′ =  for a stationary point the “First-Order 

Condition” of “FOC”, and the second-derivative condition the “Second-Order Condition”, or “SOC”.  

 

The following is a problem with parameters.  

Example 11.13  Let ( ) 2x P x xπ = − , 0x > . Find the optimal points. 

Here is a problem with a parameter P , so the solution will no longer be a numerical constant, but will 

depend on P :  

FOC:   1( ) 2 0
2

Px
x

π ′ = − =  which gives * 2 /16x P= . 

SOC:   3/21( ) 0
4

x Pxπ −′′ = − <  so the solution is a global maximum. 

  

The maximum value is 
2 2 2

* * * * 3( )
4 16 16

P P Px P x xπ π= = − = − = . 

In problems involving parameters, we are often interested not only in finding the optimal points and 

values of the objective function at the optima, but also in finding out how these changes as the 

parameters change. In this example, we have 
*

0
8

dx P
dP

= >     and    
* 3 0

8
d P
dP
π

= > . 
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We have shown that if we can show that the function to be optimized belongs to a certain class, then 

we can assert that the first-order condition delivers the global optimal point.  

Remember, however, that there are many 

functions that have global optima but are neither 

concave nor convex. In this case, you won’t be able to 

use the SOC to come up with a statement concerning 

global optimality. The function on the right is not 

concave or convex over its entire domain, but it most 

certainly has a global maximum (and a global 

minimum).  

The function in example 11.10 is another example. That function is not convex or concave 

everywhere – the second derivative doesn’t have a fixed sign. Yet it has a strict global minimum, as we 

showed earlier. In this sense, the second order condition is sufficient, but not necessary. 

 

Using the Second Derivative to Characterize Local Optimal Points  How do we use the second 

derivative to characterize local optimal points? We develop rules for functions f  where f ′′  is 

continuous; 

1)  0( ) 0f x′ =  and 0( ) 0f x′′ <  ⇒  f  has a strict local maximum at 0x x= . 

2)  0( ) 0f x′ =  and 0( ) 0f x′′ >  ⇒  f  has a strict local minimum at 0x x= . 

3)  0( ) 0f x′ =  and 0( ) 0f x′′ =  ⇒  ? 

Proof If 0( ) 0f x′ =  and 0( ) 0f x′′ < , then 

0 0 0
0 0 0

( ) ( ) ( )( ) lim lim 0
h h

f x h f x f x hf x
h h→ →

′ ′ ′+ − +′′ = = <  

Therefore there is a small interval ( , )ε ε−  such that 0( ) / 0f x h h′ + <  for all ( , )h ε ε∈ − . For (0, )h ε∈ , 

we have  0( ) 0f x h′ + <  because h  is positive. For ( ,0)h ε∈ − , 0( ) 0f x h′ + > . By the first-derivative 

test, 0x  is a strict local minimum point. Proof of part (2) is similar.  

To show (3), we show examples where 0( ) 0f x′ =  and 0( ) 0f x′′ = , but where 0x  might be 

neither a local maximum or a local minimum: 
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Example 11.14  Define for all x∈ ,  
4( )f x x= , 3( )g x x= , and 4( )h x x= − .  

We have 3( ) 4f x x′ = , 2( ) 3g x x′ = , and 3( ) 4h x x′ = −  so the only stationary point of each of these 

functions is 0x = . In addition  
2( ) 12f x x′′ = , ( ) 6g x x′′ = , and 2( ) 12h x x′′ = −  

so (0) 0f ′′ = , (0) 0g′′ = , and (0) 0h′′ = . However, 0x =  is a min. point of ( )f x , neither a min. point 

nor a max. point for ( )g x , and a max. point for ( )h x . 

 

The next example uses the second derivative to characterize local optimality. 

Example 11.15  Let  
2 2( ) exp( )f x x x= − .  

The stationary points ( )f x  are the values of x  which satisfy 
2 3( ) 2 ( ) 0xf x e x x−′ = − = , and these are 1,0,1x = − . Because 

2 2 4( ) 2 [1 5 2 ]xf x e x x−′′ = − + , we have ( 1) (1) 0f f′′ ′′− = < , and 

(0) 2 0f ′′ = > , therefore this function has local maxima at 

1x = −  and 1x = , and a local minimum at 0x = . 
 
 

Exercises 

1.   (a) Use the first derivative test to find the extreme points of  

(i) 3 2( ) 2 3f x x x x= − − + ,  (ii) 2( ) x xf x e e−= +  

Characterize the extreme points as much as you can (local, max or min, etc.). 

(b)  Is 2( ) x xf x e e−= +  convex or concave (or neither?) Use your result to determine whether the 

stationary point is a strict maximum or minimum point. 

2. Find all local maximum and minimum points of the following functions, using the second derivative 

test: 

(a) 3 2( ) 2 3f x x x x= − − + .   (b) 
2

4

2( )
1

xf x
x

=
+
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3.  Find all optimum points (local or global) of each of the following functions 

     (a)      2( ) 4 4 1f x x= − +    (b)   
22( ) xf x x e−=  

     (c)      
3 23( ) 2 6

3 2
x xf x x= − + +   (d)    2( )

1
xf x

x
=

+
 

4. Find the global maximum point *x  of the function 2 29 ( 1) 2( )y x x b= − − − −  and the value of y  

at that point, *y ? How does *x  and *y  change with b ? Plot *( )x b  and *( )y b .   

5. Find all global and local maximums and minimums, if any: 

  (a) 
2

3( )
4 1

xf x
x

=
+

, [ 1,1]x∈ −    (b) | |( )
| 1|

xf x
x

=
+

 

  (c) 
4 2, 1

( )
( 2)( 3), 1

x x
f x

x x x
− <

=  − − ≥
  (d) 3( ) xf x x e−=  

6.   Let  

2( ) 5 4x xf x e e= − + .  

The first-order condition 2( ) 2 5 0x xf x e e′ = − =  produces * ln(5 / 2)x =  as the only stationary point. 

In the notes, we used the first-derivative test to show that this point is a global minimum point.  

Find ( )f x′′ . Is it true that ( ) 0f x′′ >  for all x ? That is, does ( )f x  satisfy the (global) second 

order condition for a global minimum? If yes, show it; if not, find the intervals over which ( ) 0f x′′ > , 

and the intervals over which ( ) 0f x′′ < . Plot the graph of ( )f x . [Hint for plotting the graph: what is 

lim ( )x f x→−∞ ? What is lim ( )x f x→∞ ?]  

7.   What is wrong with the following argument:  

“Given a function ( )f x , we find that ( 1) (0) (1) 0f f f′ ′ ′− = = = . In addition, we find that 

( ) 0f x′ >  over ( , 1)−∞ −  and (0,1) , and ( ) 0f x′ <  over ( 1,0)−  and (1, )∞ . Therefore 

1x = −  and 1x =  are local maximum points, and 0x =  is a local minimum point. Because 

0x =  is the only local minimum point, it must also be a global minimum point.” 

Point out the error in the argument, giving examples to illustrate the error.     

8. What is the difference between the first order condition and the first derivative test? 
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	for every , .
	The value  is called the strict maximum value of the function.
	Example 11.3  Take the domain to be (. There is a strict global maximum point at .
	Example 11.1.2  Take the domain to be (. There are many global maximum points (all points  from 1.5 to 3 are maximum points.)
	The definition of minimum points is similar, with obvious changes:
	The point  is a minimum point for  if  for every . The value  is called the minimum value of the function. The point  is a strict minimum point for  if   for every x(D, . The value  is called the strict minimum value of the function.
	When we do not need to distinguish between a minimum point or a maximum point, we can simply call such points optimal points, and their corresponding functions values as optimal values.
	Local vs Global Optimal Points
	Given a function  f  defined over D, the point  is a local maximum point if there is an open interval , , such that
	for every .
	The value  is called a local maximum value of the function. Local minimums are defined in a similar manner.
	Example 11.4    The point  is a local maximum point.
	Note that all global maximums are by definition also local maximums, so the points  and  are, strictly speaking, also local optima.
	Our objective will be to develop methods to find optimum points, and to characterize them as maximums or minimums, global or local, unique or not, etc.  We will be presenting several different methods, none of them perfect. All apply only in given cir...
	Optimization is a skill that cannot be fully automated – many tools are available, but the application of the tools and the interpretation of the results require thought.
	First Order Condition for (Local or Global) Optima
	From the examples, one will suspect that the first derivative of  f  has a role to play in finding optimal points, as all the optimal points in the examples satisfy . In fact, the following is true:
	Example 11.5  Why is the FOC not sufficient?
	Because the candidate optimal point might be an inflection point. In example on the right, the domain is (. We have , but 3 is clearly not an optimal point.  In fact, there are no optimal points.
	Nonetheless, the FOC remains a very useful tool, because it helps us narrow down the set of ‘candidate points’, which we can then sort through using other tools. For example, suppose we are trying to find the optimum points of the function
	,
	We note this function is defined for all  , i.e., the function is defined over the open interval , and is differentiable over the entire interval. The first derivative is
	,
	so the point , 0, and 1, satisfy . These three points are therefore candidate optimum points.
	Our analysis up to this stage cannot say more about the points. Some of the points may be max, or min, or neither. But we have reduced the problem substantially, since we know that all other points are not optimum points.
	It is also essential to remember that the FOC works well only when the function is defined over an open interval, and is differentiable over that open interval. In particular, the FOC does not apply to boundary points, and points of non-differentiabil...
	Example 11.6  Why did we require  I  to be open?
	Consider an example where f  is not defined over an open interval.  Here
	with .  The FOC picks out the two (local) optimum points, but misses the global max and min which occur at 5 and (5 respectively. Note that if this function was defined over , then we would not have this problem, since  and  would no longer be optimum...
	Example 11.7  Why must  f  be differentiable over the interval?  In the example on the right, there is a strict maximum at . However, . In fact, the function is not differentiable at this point. The FOC would have missed this point.
	The problem is that (i) the optimum point might occur at a boundary point, and (ii) the optimum point might occur at points of non-differentiability, but the first-order condition applies only at interior points that are also differentiable.
	We next turn to the next steps after finding the candidate optimum points via the FOC. Several methods are presented. Remember, when you would use one method over another depends on the situation.
	The Extreme Value Theorem The first method, in fact, deals with the case where the function is defined over a closed interval.
	Theorem (The Extreme Value Theorem)  Suppose  is a continuous function defined over a closed and bounded interval. Then there is a point  that is a global maximum point, and a point  that is a global minimum point.
	(Proof omitted.)
	This theorem says that if the domain of the function is a closed and bounded interval, and if the function is continuous over this domain, then a global minimum and a global maximum will exist. The fact that the global maximum and global minimum exist...
	1. Find all the points  such that  and compute the value of the function at these points.
	2. Find all the points where the function is not differentiable, and compute the value of the function at these points.
	3. Find  and , the value of the function at the boundary points.
	4. Compare the value of the function at all of these points. The point with the largest function value is the global maximum point, and the point with the lowest function value is the global minimum point.
	Example 11.8  Let
	, .
	Find the global maximum and global minimum points.
	This function is easier to deal with than it first appears. Notice that the denominator is always greater than zero, so the function is defined at all points in its domain (in fact defined everywhere, but we are only interested in the function over th...
	and .
	Over the interval , we have
	,
	so , and there are no points over  such that .
	The function is not differentiable at . At this point,
	Over the interval , the function is
	.
	The first derivative is
	,
	so  at the point , with .
	Comparing , , , and  we find that the global maximum point occurs at the boundary point  with, and the global minimum occurs at the (interior, differentiable) point  with.  The function is plotted for you on the right.
	Example 11.2.2 (revisited)  Let
	, with .
	For this example, using the procedure outlined above, you will find two interior stationary points [points where ]. Comparing the value of the function at these points with the value of the function at the boundary, you will come to the conclusion tha...
	Notice that this method will be silent on the two interior stationary point. It cannot tell you that the points  and  in the figure are local max and local min respectively.
	For the extreme value theorem to guarantee the existence of a global min and a global max, we must have  to be continuous, and the domain to the closed and bounded. If is  not continuous, or the domain not closed and bounded, (or both), then the eithe...
	Suppose the function above was defined over . Then there are no global maximum and global minimum points. Using the procedure above, you would have identified two points  and  as candidate points, and determined by comparing values that  is the global...
	The next example shows what might happen if  is not continuous.
	Example 11.9  Let
	This function is defined over the closed and bounded interval  but it is not continuous. The global minimum still exists (at ), and the procedure described above will pick this out. However, the procedure will have picked out  as the global maximum po...
	We return to differentiable functions defined over open intervals.
	The First Derivative Test  We can use the first derivative more extensively to get further information about the nature of any stationary points.
	The First-Derivative Test for Optima Suppose  is defined on an open interval  and is differentiable on .  Let  be a stationary point.
	(a)  If  for all  in  such that , and   for all , then  is a maximum point over the interval .
	(b)  If  for all  in  such that , and  for all  , then  is a minimum point over the interval .
	If the interval  is the entire domain of the function, then  is a global optimum. If the interval  is some small interval centered at , then the condition guarantees  is a local optimum. If the inequalities are changed to strict inequalities, the opti...
	Example 11.10  Let , x((.
	Then   when , i.e.,  is a stationary point. Furthermore,  is always positive, and  is increasing, therefore  for all , and  for all , so  is a strict minimum point.
	Example 11.11  Let
	,
	then . We have the following “sign” diagram
	----------  ------------ 0 --------------  ---------------
	+    +
	+      +    +
	+   +      +    (
	+         +
	so  and  are local maximums, and  is a local minimum of . Note that this analysis does not say that the stationary points are not also global optima. In fact, the stationary points here are also global minimums. To show this requires further argument,...
	Maximum/Minimum for Concave/Convex Functions   The class of concave and convex functions are much easier to deal with. Recall that for twice-differentiable functions
	is convex on an interval         for all  in
	is concave on an interval        for all  in
	for all  in    (    is strictly convex on an interval
	for all  in    (    is strictly concave on an interval
	If , and  for all  in some interval , i.e.,  is non-decreasing over the interval, then it must be that  for all  in , and  for all  in . In other words,
	A similar argument shows that if  for , and  over , then we have a strict minimum over the interval .
	Example 11.12  Let . Then
	when x = 1 , and
	for all .
	Therefore,  is strictly convex, and  x = 1 is a strict global minimum point.
	There are times when it is easier to use the first derivative test to find maximum and minimum points (such as when the function’s second derivative is messy, or when the function is not twice differentiable everywhere). At other times, it is easier t...
	Economists often call the condition that  for a stationary point the “First-Order Condition” of “FOC”, and the second-derivative condition the “Second-Order Condition”, or “SOC”.
	The following is a problem with parameters.
	Example 11.13  Let , . Find the optimal points.
	Here is a problem with a parameter , so the solution will no longer be a numerical constant, but will depend on :
	FOC:    which gives .
	SOC:    so the solution is a global maximum.
	The maximum value is .
	In problems involving parameters, we are often interested not only in finding the optimal points and values of the objective function at the optima, but also in finding out how these changes as the parameters change. In this example, we have
	and    .
	We have shown that if we can show that the function to be optimized belongs to a certain class, then we can assert that the first-order condition delivers the global optimal point.
	Remember, however, that there are many functions that have global optima but are neither concave nor convex. In this case, you won’t be able to use the SOC to come up with a statement concerning global optimality. The function on the right is not conc...
	The function in example 11.10 is another example. That function is not convex or concave everywhere – the second derivative doesn’t have a fixed sign. Yet it has a strict global minimum, as we showed earlier. In this sense, the second order condition ...
	Using the Second Derivative to Characterize Local Optimal Points  How do we use the second derivative to characterize local optimal points? We develop rules for functions  where  is continuous;
	1)   and  (   has a strict local maximum at .
	2)   and  (   has a strict local minimum at .
	3)   and  (  ?
	Proof If  and , then
	Therefore there is a small interval  such that for all . For , we have   because  is positive. For , . By the first-derivative test,  is a strict local minimum point. Proof of part (2) is similar.
	To show (3), we show examples where  and , but where  might be neither a local maximum or a local minimum:
	Example 11.14  Define for all ,
	, , and .
	We have , , and  so the only stationary point of each of these functions is . In addition
	, , and
	so , , and . However,  is a min. point of , neither a min. point nor a max. point for , and a max. point for .
	The next example uses the second derivative to characterize local optimality.
	Example 11.15  Let
	.
	The stationary points  are the values of  which satisfy , and these are . Because , we have , and , therefore this function has local maxima at  and , and a local minimum at .
	1.   (a) Use the first derivative test to find the extreme points of
	(i) ,  (ii)
	Characterize the extreme points as much as you can (local, max or min, etc.).
	(b)  Is  convex or concave (or neither?) Use your result to determine whether the stationary point is a strict maximum or minimum point.
	2. Find all local maximum and minimum points of the following functions, using the second derivative test:
	(a) .   (b)
	3.  Find all optimum points (local or global) of each of the following functions
	(a)         (b)
	(c)        (d)
	4. Find the global maximum point  of the function  and the value of  at that point, ? How does  and  change with ? Plot  and .
	5. Find all global and local maximums and minimums, if any:
	(a) ,    (b)
	(c)   (d)

