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Mathematics for Economics            Anthony Tay 

10. The Second-Order Derivative, Concavity and Convexity 

The second-order derivative (or simply ‘second derivative’) is the derivative of the derivative 

0
( ) ( )( ) limh

f a h f af a
h→

′ ′+ −′′ = . 

The objective of this section is to provide examples of their application in general, and in economics in 

particular.  

We can also compute ‘third-order derivatives’, ‘fourth-order derivatives’, etc. These are 

useful, although we will be using them less frequently. 

Example 10.1  If 3( )f x x= , then 2( ) 3f x x′ = , ( ) 6f x x′′ = , ( ) 6f x′′′ = . 

 

Notation   If  y = f (x) , then 

Second Derivative   f ′′(x),  f (2)(x), y′′ , 
2

2 ( )d f x
dx

,  
2

2

d y
dx

 

n-th ordered derivative  f (n)(x), y(n) , ( )
n

n

d f x
dx

 , 
n

n

d y
dx

 

If y  is a function of time, then the second derivative is often written y , following the convention that 

the first-derivative in such applications is written y . 

 

The most straightforward interpretation of the second-derivative is that it is the rate of change 

of the rate of change of ( )f x  as x  increases.  

Geometrically, the second derivative can also help to describe the shape of a function. When 

used in specific disciplines, the first and second derivations can often be given an interpretation 

appropriate to the context of that discipline. You are probably familiar with the concepts of velocity and 

acceleration in physics. 

Example 10.2  If ( )x t  gives you the position of an object relative to some reference point (0)x , 

and t  is time, then x  is the velocity of the object, and x is its acceleration. 
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Geometric Interpretations    

We can use the second-derivative to characterize the shape of a function, particularly regarding its 

curvature. We begin with a geometric definition of the concept of convexity and concavity. 

 

A function is said to be strictly concave if for any 

1 2x x< , the chord joining the points 1 1( , ( ))x f x  

and 2 2( , ( ))x f x  lies strictly below the function 

for all values of x  strictly between 1x  and 2x , 

1 2x x x< <  

 

 

One way to express this mathematically is given in next definition. 

Definition A function is strictly concave over its domain if for any two values of x , say 1x  

and 2x  with 1 2x x< , and for all 0 1θ< < , 

1 2 1 2( ) (1 ) ( ) ( (1 ) )f x f x f x xθ θ θ θ+ − < + −  

 

x1 x2

f(x1)

f(x2)

θx1+(1-θ)x2

f(θx1+(1-θ)x2)

θf(x1)+(1-θ)f(x2)

x1 x2

f(x1)

f(x2)



Mathematics for Economics 
 

10-3 

If we allow the chord to lie on the function at some points, then the function is said to be weakly 

concave, or simply ‘concave’. A function is concave if for any two values of x , say 1x  and 2x  with 

1 2x x< , and for all 0 1θ≤ ≤ , we have 

1 2 1 2( ) (1 ) ( ) ( (1 ) )f x f x f x xθ θ θ θ+ − ≤ + − . 

A function is strictly convex if for any two values of x , say 1x  and 2x  with 1 2x x< , and for all 

0 1θ< < , we have 

1 2 1 2( ) (1 ) ( ) ( (1 ) )f x f x f x xθ θ θ θ+ − > + − . 

A function is convex if for any two values of x , say 1x  and 2x  with 1 2x x< , and for all 0 1θ< < , we 

have 

1 2 1 2( ) (1 ) ( ) ( (1 ) )f x f x f x xθ θ θ θ+ − ≥ + − , 0 1θ≤ ≤ . 

Note that strictly concave functions are concave; the set of strictly concave functions are a subset of the 

set of concave functions. Likewise, strictly convex functions are convex. Note also that strictly concave 

functions can be strictly increasing or strictly decreasing.  

Example 10.3  1/ 2( )f x x=  is strictly concave, and strictly increasing. 

 

The definitions of concavity given above are very general, and can apply to functions that 

may be non-differentiable at certain points. For differentiable functions, however, it is often easier to 

make use of the second derivations to show concavity/convexity. From these definitions given earlier, 

it is possible to show that  

(1)  f  is convex on an interval I     ⇔    ( ) 0f x′′ ≥  for all x  in I  

(2)  f  is concave on an interval I     ⇔    ( ) 0f x′′ ≤  for all x  in I  

(3)  ( ) 0f x′′ >  for all x  in I    ⇒   f  is strictly convex on an interval I     

(4)  ( ) 0f x′′ <  for all x  in I    ⇒   f  is strictly concave on an interval I   

We omit proofs. The results are sufficiently intuitive for our purpose. For a function to be concave, it is 

apparent that the slope must never increase as x  increases. It is also apparent that if the slope of the 
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function always decreases as x  increases, i.e., if ( ) 0f x′′ < , then the function will have a strictly 

concave shape.  

The only aspect of definitions (1) to (4) that may not be obvious is that it is possible for a 

function to be strictly concave over an interval I  without ( ) 0f x′′ <  for all x  in I .  

Example 10.4    The function 4( )f x x= −  is strictly concave, but it is not true that ( ) 0f x′′ <  for all x . 

In particular, 2( ) 12 0f x x′′ = − =  at 0x = . 

Convexity and concavity will play an important role in function optimization. For instance, if 

a strictly concave function ( )f x  has a point *x  at which *( ) 0f x = , then *x  must be an optimal point. 

A function may be concave in some portions of its domain, and convex in other parts of it. 

The point where a function switches from concavity to convexity, or the other way around, is called an 

inflection point. The plot below is of a function 3( ) 10f x x x= + , its first derivative is 2( ) 3 10f x x′ = +  

and its second derivative is ( ) 6f x x′′ = . It is concave when 0x <  and convex when 0x > . 

 

Definition The point 0x  is called an inflection point of a function ( )f x  if over some interval 

( , )a b  containing 0x , we have  

    ( )f x x′′ ≤  over 0( , )a x  and ( ) 0f x′′ ≥  over 0( , )x b   

or    ( )f x x′′ ≥  over 0( , )a x  and ( ) 0f x′′ ≤  over 0( , )x b   

f''(x)<0

f''(x)>0
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If 0x  is an inflection point, it must be that 0( ) 0f x′′ = .  But note that 0( ) 0f x′′ =  does not imply that 

0x  is an inflection point. (example: 4( )f x x= ). However, if 0( ) 0f x′′ =  and 0( )f x′′  changes sign at 

0x , then 0x  is an inflection point. Note also that 0( )f x′  need not be zero for 0x  to be an inflection 

point, as in the function plotted above.  

Some Economic Applications   

The second derivative is useful in economics not only because of its role in optimization, but 

also because it can often be given economic interpretations. 

Example 10.5    Diminishing Marginal Productivity     As a firm increases labor input starting from low 

levels, its production capacity generally increases.  However, the increase in productive capacity, as 

more labor is added, tends to get smaller: increasing labor from 100 to 101 might increase productive 

capacity by 10 units; increasing labor from 101 to 102 might increase productive capacity by 7 units, 

say. That is, the rate of increase in productive capacity falls as more labor is added. Suppose we 

represent the firm’s production function by ( )f L  where L  is labor input. We can impose increasing 

productivity be requiring the condition ( ) 0f L′ > . We can impose “diminishing marginal productivity” 

by requiring ( ) 0f x′′ < . 

Example 10.6   Diminishing Marginal Utility    Suppose ( )u x  represents the utility that a person gets 

from consuming x  amount of a good. If ( ) 0u x′ >  then more of the good is preferred to less of it. If 

( ) 0u x′′ < , then every additional unit of the good generates less additional utility for the consumer than 

the previous additional unit. 

 Example 10.7   Risk aversion    Suppose again that ( ) 0u x′ >  and ( ) 0u x′′ < . Such a function has a 

shape like in the figure below.  

 
x1

x2

u(x1)

u(x2)

px1+(1-p)x2

pu(x1) +
  (1-p)u(x2)

u(px1+ (1-p)x2)
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Suppose the person with utility function ( )u x  is given a choice. He can either accept a lottery that pays 

1x  with probability p , and 2x  with probability 1 p− , where 0 1p< < , or accept 1 2(1 )px p x+ −  with 

certainty. In the first case, the person’s expected utility is 1 2( ) (1 ) ( )pu x p u x+ − . In the second case, the 

person gets utility 1 2( (1 ) )u px p x+ − .   

In the figure we see that because of the shape of the function,  

1 2 1 2( ) (1 ) ( ) ( (1 ) )pu x p u x u px p x+ − < + −  

This person would rather have the certain amount. He would avoid the lottery if given a choice. He is 

‘risk-averse’. Contrast this with the fellow for whom  

1 2 1 2( ) (1 ) ( ) ( (1 ) )pu x p u x u px p x+ − > + − . 

The person prefers the lottery. He is ‘risk-loving’.  

 

Exercise 

1.  Show that the function 1( ) xf x e x−= −  is strictly convex. 

2. Find the regions of x  for which ( ) ( 1)( 2)( 3)f x x x x= − − +  is (i) strictly convex, (ii) strictly 

concave.  

3. Find the first and second derivatives of each of the following functions.  

  (a) 2
1

( ) ( )µ µ
=

= −∑ n
ii

f x  where ix , 1,2,...,=i n  is a set of numbers. Find the intervals over 

which the function is (strictly) increasing, decreasing, concave, or convex. 

 (b) ( ) log xy f x e= = . What is the largest possible domain of this function? Find the 

intervals over which the functions are (strictly) increasing, decreasing, concave, or convex. 

Sketch the graph 
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