Mathematics for Economics

9. Elasticities

Economic analysis frequently focuses on elasticities – the percentage change in one variable that results from a certain percentage change in another variable: price elasticities of demand, income elasticities of demand, elasticity of substitution, etc. The elasticity is just another way of expressing a rate of change.

<u>Average Elasticity</u> Suppose y = f(x). The Average Elasticity of x in the interval $[x, x + \Delta x]$ is defined as

$$\frac{[f(x + \Delta x) - f(x)]/f(x)}{\Delta x/x}$$

where " Δx " represent a change in x. With some rearrangement, we can write this as

$$\frac{x}{f(x)}\frac{f(x+\Delta x)-f(x)}{\Delta x}.$$

The **Elasticity** of f(x) with respect to x is defined as

$$\mathrm{El}_{x}f(x) = \frac{x}{f(x)}f'(x).$$

This is just the limiting version of the average elasticity:

$$\lim_{\Delta x \to 0} \frac{\left[f(x + \Delta x) - f(x)\right] / f(x)}{\Delta x / x} = \lim_{\Delta x \to 0} \frac{x}{f(x)} \frac{\left[f(x + \Delta x) - f(x)\right]}{\Delta x}$$
$$= \frac{x}{f(x)} \lim_{\Delta x \to 0} \frac{\left[f(x + \Delta x) - f(x)\right]}{\Delta x}.$$

The elasticity of f(x) w.r.t. x is therefore just the instantaneous *proportional* rate of change of f(x) wrt x, just as the derivative is the instantaneous rate of change. Note that the elasticity of f(x) w.r.t. x is itself a function of x.

Example 9.1 If $f(x) = x^2$, then f'(x) = 2x, and therefore

$$El_x f(x) = \frac{x}{f(x)} f'(x) = \frac{x}{x^2} 2x = 2.$$

Example 9

nple 9.2 If
$$f(x) = \left(\frac{x+1}{x-1}\right)^{1/3}$$
, then
 $f'(x) = (\dots, grind grind...) = -\frac{2}{3}(x+1)^{-2/3}(x-1)^{-4/3}.$

/

Thus,

$$El_{x}f(x) = \frac{x}{f(x)}f'(x)$$

= $x(x+1)^{-1/3}(x-1)^{1/3}\left(-\frac{2}{3}(x+1)^{-2/3}(x-1)^{-4/3}\right)$
= $-\frac{2}{3}\frac{x}{(x+1)(x-1)}$
= $-\frac{2}{3}\frac{x}{x^{2}-1}$

It is worthwhile "translating" the rules for differentiation into rules for elasticities.

Example 9.3 If f(x) = g(x)h(x), then $\operatorname{El}_x(gh) = \operatorname{El}_x g + \operatorname{El}_x h$.

We have f' = g'h + gh'. Therefore

$$\mathrm{El}_{x}f = \frac{x}{f}g'h + gh' = \frac{x(g'h + gh')}{gh} = \frac{xg'}{g} + \frac{xh'}{h} = \mathrm{El}_{x}g + \mathrm{El}_{x}h$$

You can easily (and should!) derive "elasticity rules" corresponding to the other differentiation rules. Often, the easiest way is the straightforward application of the definition

$$\mathrm{El}_{x}f(x) = \frac{x}{f(x)}f'(x).$$

On occasion, it might be easier to apply the following trick:

$$\frac{d}{dx}\ln f(x)$$

and multiply the result by x. This is because

$$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)},$$

so that

$$\left(\frac{d}{dx}\ln f(x)\right)x = \frac{f'(x)}{f(x)}x = \operatorname{El}_{x}f(x).$$

Example 9.4 Suppose

$$f(x) = \left(\frac{x+1}{x-1}\right)^{1/3}, \ x \in (-\infty, -1) \cup (1, \infty)$$

then $\ln f(x) = \frac{1}{3} \left[\ln(x+1) - \ln(x-1) \right]$ so that $\frac{f'(x)}{f(x)} = -\frac{2}{3} \left[\frac{1}{x^2 - 1} \right]$, and
 $\operatorname{El}_x f(x) = \frac{f'(x)}{f(x)} x = -\frac{2}{3} \left[\frac{x}{x^2 - 1} \right].$

Exercises

- 1. Find
 - (a) $El_x y$ when $y = \frac{1+x}{1-x}$
 - (b) $El_x f(x)$ when $f(x) = e^{ax}$
 - (c) $El_{x}g(x)$ when $g(x) = [f(x)]^{2}$
 - (d) $El_x g(x)f(x)$ in terms of $El_x g(x)$ and $El_x f(x)$.
 - (e) $El_x x^r$
 - (f) $El_x \log x$