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Mathematics for Economics        Anthony Tay 

7.   Limits of a function 

The concept of a limit of a function is one of the most important in mathematics. Many key concepts are 

defined in terms of limits (e.g., derivatives and continuity). The primary objective of this section is to help 

you acquire a firm intuitive understanding of the concept. 

Roughly speaking, the limit concept is concerned with the behavior of a function f  around a 

certain point (say a ) rather than with the value ( )f a  of the function at that point. The question is: what 

happens to the value of ( )f x  when x  gets closer and closer to a  (without ever reaching a )?    

 

Example 7.1     Take the function 2
ln( )

1
xf x

x
=

−
.   

This function is not defined at the point 1x = , because 

the denominator at 1x =  is zero. However, as x  

‘tends’ to 1, the value of the function ‘tends’ to 1
2 . We 

say that “the limit of the function ( )f x  is 1
2  as x  

approaches 1, or    

21

ln 1lim
21x

x
x→

=
−

 

It is important to be clear: the limit of a function and the value of a function are two completely different 

concepts. In example 7.1, for instance, the value of ( )f x  at 1x =  does not even exist; the function is 

undefined there. However, the limit as 1x →  does exist: the value of the function ( )f x  does tend to 

something (in this case: 1
2 ) as x  gets closer and closer to 1. To emphasize this point, consider the following 

example: 
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f(x) = ln(x) / (x2-1)
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Example 7.2 Let 
10,  3

( )
2 1, 3

x
f x

x x
=

=  + ≠
 

This function is defined at 3x = ; we have (3) 10f = . However, the limit 

of ( )f x as 3x →  is not 10. If we imagine any sequence of x’s approaching 

3, (but never reaching 3), then it should be clear that the value of the 

function ( ) 2 1= +f x x  approaches 7:  

3
lim ( ) 7
x

f x
→

=  

The next example again emphasizes the point that the limit of a function and the value of a function are two 

different concepts. The example also illustrates the point that limits do not always exist. 

 

Example 7.3    Let 
2 3,  3

( ) 10,  3
2 1,  3

x x
f x x

x x

+ <
= =
 + >

 

The value of the function at 3x =  is 10: (3) 10f = . What is its limit 

as 3x → ?   

 

If we restrict ourselves to sequence of x’s approaching 3 from the left, the value of the function approaches 

9. However, for sequence of x’s approaching 3 from the right, the function approaches 7. It appears that the 

limit of the function depends on how the approach towards x = 3 was made. 

In this case, we say that “the left limit of the function ( )f x  is 9”, and “the right limit of the function 

( )f x  is 7”. We write  

3
lim ( ) 9
n

f x
−→

=  and 
3

lim ( ) 7
n

f x
+→

= . 

But we say that the limit of this function does not exist.  

If the limit of a function exists, then their right- and left-limits must also exist, and must be equal. 

In fact, to find limits (or existence of limits) of ‘piece-wise’ functions such as examples 7.2 and 7.3, it is 

often a fruitful strategy to find their left- and right-limits, and see whether they coincide. 
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Why it is useful to have a concept that focuses on what a function tends to as x a→ , as opposed 

to the value of the function at x a= ? As a quick application that highlights this distinction, consider the 

concept of continuous functions. How might we define continuity? One way to do this is to say that a 

function is continuous at a point a  if  

lim ( ) ( )
x a

f x f a
→

=  

A function is continuous at a point a  if the limit of the function as x a→  and the value ( )f a  of the 

function at a  coincides. A function is not continuous at x a=  if either (i) the limit doesn’t exist as x a→ , 

(ii) the function doesn’t exist at a , or (iii) both the limit and the value at x a=   exist, but are not equal to 

each other. The function in example 7.1 is not continuous at 1x = . The functions in examples 7.2, and 7.3 

are not continuous at 3x = . They are continuous at all other points in their domains.     

In more advanced courses, you will come across a more formal definition of limits. This definition 

is given in an appendix to this set of notes. For simple functions it is easy to use this definition to formally 

prove a certain limit result (such as lim 3 3x a x a→ = ), but we will rely on informal arguments at this point. 

For more complicated expressions, the following rules are helpful: 
 

Rules for finding limits  If 
0

lim ( )→ =x x f x a  and 
0

lim ( )→ =x x g x b , then 

  (i) 
0

lim [ ( ) ( )]x x f x g x a b→ + = + ; 

  (ii) 
0

lim [ ( ) ( )]x x f x g x ab→ = ; 

  (iii) 
0

lim [ ( ) / ( )] /x x f x g x a b→ = , provided b ≠ 0; 

  (iv) 
0

/ /lim [ ( )]p q p q
x x f x a→ = ; 

  (v) if ( )g x  is continuous, then 
0 0lim ( ( )) ( ( ))x x g f x g f x→ = .  

We will not prove these rules, but merely illustrate their use with a few examples. 
 

Example 7.4   Find 1
3 3lim

1x
x

x→−

+
−

.  

It is clear from the limit laws that 
1

lim(3 3 ) 0
x

x
→−

+ =  (the full argument is  

( )( )1 1 1 1 1 1
lim(3 3 ) lim 3 lim 3 lim 3 lim 3 lim 3 3( 1) 0
x x x x x x

x x x
→− →− →− →− →− →−

+ = + = + = + − =  
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but this can be easily done in one step.) Similarly, 
1

lim( 1) 2
x

x
→−

− = − . Therefore  

     

1

1

1
1

valid because lim ( 1) 0

lim(3 3 )3 3 0lim 0
1 lim( 1) 2

x

x

x
x

x

xx
x x

→−

→−

→−
→−

− ≠

++
= = =

− − −


. 

Note   It is tempting to simply substitute 1x = −  into (3 3 ) ( 1)+ −x x  to find this limit. In this case you do 

get the correct answer (because the function happens to be continuous at 1x = − ). However, the argument 

would be incorrect.  

Note that if the limit of the denominator had been zero, we would not have been able to use the 

rules for calculating limits. Yet these are very important cases. Here are some examples to help us 

understand what can happen in such situations. 
 

Example 7.5  
( )2

1( )f x
x a

=
−

 , ≠x a . 

Clearly ( )f x  increases without bound for any sequence of x approaching a  (whether from the right or 

from the left) so the limit does not exist. We write  

“ lim ( )
x a

f x+→
= ∞” and “ lim ( )

x a
f x−→

= ∞”, 

as shorthand for the statements “ ( )f x  increases without bound as x  approaches a  from the left”, and 

“ ( )f x  increases without bound as x  approaches a  from the right”. We can also write  

lim ( )x a f x→ = ∞   

for this example (but strictly speaking, the limit does not exist!) 
 

Example 7.6  
( )

1( )f x
x a

=
−

 , ≠x a . 

Clearly ( )f x  decreases without bound for any sequence of  x  approaching  a from the left, and increases 

without bound for any sequence of  x  approaching  a  from the right. We write 

lim ( )
x a

f x+→
= ∞  and lim ( )

x a
f x−→

= −∞. 

The limit itself, lim ( )x a f x→ , does not exist. 
 

Example 7.7  Find 
2

1lim
2→

+
−x

x
x

.  
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The numerator limit is 3 (specifically, not 0), but the denominator limit is 0. As 2→x  from the left, 2−x  

is negative and close to zero whereas the numerator is close to three, the ratio is thus a large negative number 

and gets larger in absolute value, without bound, as 2→x . Thus, 
2

lim ( 1) / ( 2)
−→

+ − = −∞
x

x x .  Likewise, 

2→x  from the right, 2−x  is positive and close to zero whereas the numerator is again close to three, so 

the ratio is a large positive number and gets larger without bound as 2→x . Thus, 
2

lim ( 1) / ( 2)
+→

+ − = ∞
x

x x . 

 

Example 7.8 Using an argument similar to example 7.7, it should be straightforward to show that 
2

2
lim( 1) / ( 2)
→

+ − = ∞
x

x x . 

 

Much more interesting are examples where both the numerator and denominator are zero at a certain point, 

as in the example at the very start of this section. The function is therefore not defined at that point, but 

does the limit exist?  

Example 7.9   Let 
2 2( ) , 2

2
− −

= ≠
−

x xf x x
x

.  

This function does not exist at 2=x ; we cannot talk about the value of the function at 2=x . Does it have 

a limit at 2=x ? As 2→x , both the numerator and the denominator goes to zero. But what about the ratio 

of the numerator and denominator? It turns out that the ratio converges to 3 as 2→x . The easiest way to 

see this is to factor the numerator to get  

   
2 2 ( 2)( 1)( ) 1, 2

2 2
x x x xf x x x

x x
− − − +

= = = + ≠
− −

 

In other words, this function is actually simply a straight line, but with a ‘hole’ at 2=x . However, the ‘hole’ 

doesn’t matter as far as the limit is concerned. Thus, 

   
2

2 2 2

2lim ( ) lim lim( 1) 3
2→ → →

− −
= = + =

−x x x

x xf x x
x

 

Example 7.10   Let 
2

2

2( ) , 2
( 2)
− −

= ≠
−

x xf x x
x

.  

We have   

   
2

2 22 2 2 2

2 ( 2)( 1) ( 1)lim ( ) lim lim lim
( 2) ( 2) ( 2)→ → → →

− − − + +
= = = =

− − −x x x x

x x x x xf x dne
x x x
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In particular, the left limit is −∞  and the right limit is ∞ . 

Example 7.11   Let 
2

2

( 2)( ) , 2
2

−
= ≠

− −
xf x x

x x
.  

Employing the same trick as in Ex 7.3.4, we have   

   
2 2

22 2 2 2

( 2) ( 2) ( 2)lim ( ) lim lim lim 0
2 ( 2)( 1) ( 1)→ → → →

− − −
= = = =

− − − + +x x x x

x x xf x
x x x x x

. 

 

So there are many possibilities in the “ 0 / 0 ” case (this is an example of what is known as an “indeterminate 

form”). Later, we will look more closely at a technique that helps with solving such problems. 

 

Limits at Infinity In addition to limits at a point, it is also often useful, if  f  is a function defined over 

arbitrarily large positive real numbers, to discuss “limits at infinity”. That is, to describe the behavior of the 

functions “as  x  grows towards infinity”. (This is similar to limits of sequences, which are, after all simply 

functions over the integers.) 

We write lim ( )x f x A→∞ =  if  ( )f x  can be made arbitrarily close to A if we take values of  x  that 

are large enough. 

Example 7.12   Consider the function ( ) sin( ) /f x x x= .  

 

Clearly, lim ( ) 0x f x→∞ = . Given any small number 0ε > , the absolute difference between ( )f x  and 0  is 

less than ε  for all values of  x  beyond some number.   
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The following are obvious, and easy to show: 

Example 7.13   limx c c→∞ = ;   lim 1/ 0→∞ =x x ;  

    2lim →∞ = ∞x x ;  lim →−∞ = −∞x x .   

A useful limit which we have already seen in terms of the limit of a sequence is: 

Example 7.14  1lim 1→∞
 + = 
 

m

m e
m

. 

Referring back to Ex. 7.13, what 2lim →∞ = ∞x x  means exactly, is that the function increases without 

bound. If you set a bound of M , no matter how large, the function 2x  will exceed that value for x  large 

enough. Also, like sequences, some functions simply oscillate as →∞x . An obvious example is sin( )x , 

which is bounded yet never converges to any number. 

The usual limit laws can be used to compute limits at infinity. 
 

Example 7.15 
( / ) ( / )1 1lim 1 lim 1 lim 1

/ /→∞ →∞ →∞

      + = + = + =      
       

rtmt m r rt m r
rt

m m m
rA A A Ae
m m r m r

 

For rational functions, it is often useful to first divide both the numerator and the denominator by the highest 

power of x  in the denominator.  
 
Example 7.16 

   
( ) ( )

( )
2 2 22

2 2 2 2

3 1 / lim 3 1/ 1 /3 1lim lim 3
1 ( 1) / lim 1 1/

→∞
→∞ →∞

→∞

+ − + −+ −
= = =

+ + +
x

x x
x

x x x x xx x
x x x x

 

    
( ) ( )

( )
2 2 22

2 2 2 2

3 1 / lim 3 1/ 1 /3 1lim lim 3
1 ( 1) / lim 1 1/

→−∞
→−∞ →−∞

→−∞

+ − + −+ −
= = =

+ + +
x

x x
x

x x x x xx x
x x x x

 

The problem here is that both the numerator and denominator →∞  as →∞x , and we have to be vary 

careful with things like “ /±∞ ±∞ ”. Such functions can converge, increase/decrease without bound, or even 

oscillate. 

We also have to be careful with “∞ −∞ ” and “ .0∞ ” situations: 
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Example 7.17 

  2lim ( )→∞ − = ∞x x x ;     2lim ( )x x x→∞ − = −∞ ; 

  2lim ( )(1 / )→∞ = ∞x x x ;     2lim (1 / ) 0x x x→∞ = . 

The issue in situations like these is not so much the convergence to infinity of the various components of 

the functions, but how quickly (or slowly) those components are converging to infinity. Another example: 

Example 7.18 

  

( )

( )

2
2 2

2

2 2

2

3lim 3 lim 3
3

3lim
3
3lim 3 / 2

1 3 / 1

x x

x

x

x x xx x x x x x
x x x

x x x
x x x

x
x x

→∞ →∞

→∞

→∞

− +
− − = − −

− +
− −

=
− +
−

= = −
− +

 

Example 7.18 shows that a “∞ −∞ ” situation might well converge to a constant (oscillation is possible 

too!). The example also illustrates a technique very useful in situations involving radicals. 

Asymptotes   Functions that converge to a constant are sometimes said to converge to a horizontal 

asymptote. For functions that increase or decrease without bound, we can also define an (non-horizontal) 

asymptote.  

Example 7.19  

 

5

5 4 4 4

44

3 44 4 4

1 1
1lim lim lim 1 111 1

x x x

x xx x x x
x xx x

x xx x x

→∞ →∞ →∞

− −−
= = = −∞

+ + + ++ +
 

This function decreases without bound, but we may be able to say something about how it decreases without 

bound. In this case, we have 
5 2

4 4

1 1( )
1 1

− + +
= = − +

+ + + +
x x xf x x

x x x x
  

so that ( ) ( )f x h x− =
2

4

1
1

x x
x x
+ +
+ +

 and clearly 
2

4

1lim 0
1x

x x
x x→∞

+ +
=

+ +
.  

 The function thus decreases without bound, but looks more and more like the straight line 

( ) = −h x x  as x  increases. We say that ( )h x x= −  is an asymptote of ( )f x . 
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One misunderstanding concerning asymptotes is that the function cannot ‘cross’ its asymptote. This is not 

correct. In Example 7.12, the function ( ) 0=h x  is a (horizontal) asymptote of ( ) sin( ) /f x x x= , but ( )f x  

crosses ( )h x  infinitely many times. 

We can also generalize asymptotes to non-linear curves: 

Example 7.20  
3 2 2( )

1
x xf x

x
− +

=
−

 

This function increases without bound as →∞x . But because 

     
3 2

22 2( )
1 1

x xf x x
x x
− +

= = +
− −

, 

we have   
2lim ( ( ) ) lim 2 / ( 1) 0→∞ →∞− = − =x xf x x x , 

so ( )f x  looks more and more like 2x  as →∞x . We say that 2( ) =h x x  and ( )f x  are asymptotic to each 

other, as →∞x .   
 

Exercises 

1.  Find the following limits using the “rules for computing limits” 

a. 
2

( 1)( 2)lim
( 1)→

− −
+y

y y
y

  b.   
2

3

2lim
1→

−
+x

x x
x

 

2. Find the following limits if they exist. If they don’t exist, find the left and right limits. (For this exercise, 

do not use L’Hospital’s rule, even where it applies.) 

 a. 
2

2
3 3 18lim

2x
x x

x→

+ −
−

    b.
3

0 5 2

2 1lim
1x

x x
x x→

− −
− −

 c. 
3 2

0
3 2limx

x x x
x→

+ −   

 d. 
2

1 2

4 3lim
2 1→

− +
− +x

x x
x x

  e. 3lim
3→ −x

x
x

  f. 2
1lim

| 2 |→ −x x
 

g.   9
9lim
3→

−
−x

x
x

  h.   0lim ( )→x f x  where 
2 0( )
2 0

 ≥= 
− <

t tf x
t t

 

i.    0
4 2lim →

+ −
x

x
x

  j.   
2

0
4 2lim →

+ −
x

x
x

 

Plot the graph of the expression in (c).  
 



Math for Economics   7-10 
 

3. Prove that polynomials are continuous everywhere. 

4. For functions (a) to (g), determine if there are points of discontinuity. If it is continuous everywhere, 

prove it (you may use any result given in the notes). If it has a point of discontinuity, state why it is 

discontinuous there (e.g., because not defined at that point, or perhaps the limit disagrees with the 

value at that point.) 

 a. 2

2 1, 1
( )

3 1, 1
x x

f x
x x
− ≥

=  + <
     b. 2

5 1, 1
( )

3 1, 1
x x

f x
x x
− ≥

=  + <
    c. 

2

3

4( )
8

−
=

−
xf x
x

 

 d. 4 2( ) 1 / 7 1= + +g x x x      e. 2

2 3, 2
( )

, 2
− ≤

=  >

x x
f x

x x
 f.   ( ) | | /=f x x x  

5. a.   Evaluate the following limits 

i. 2 3lim
1x
x

x→−∞

+
−

  ii. 2lim 3→−∞ + −x x x    iii. 2lim 3→−∞ + −x x x x  

iv. 
5

4

1lim
1→−∞

−
+ +x

x
x x

 v. 
3 2

2

2 3 3 6lim
1x

x x x
x→∞

− + −
+

  

 Find the asymptote for the expressions in (iv)  and (v) as x →± ∞ . 

b.  Find the asymptote to the function 2( ) / 3= +f x x x  as →∞x .  

 Hint: use part (a.iii) 

6. For each function, find a simpler function to which it is asymptotic as →∞x . 

 a.   
5 3

2
3( )

1
− +

=
−

x xf x
x

  b.   
3 2 2( )

1
− +

=
−

x xf x
x

 c.  
2 2( )

2
−

=
−

xf x
x

  

7. (a)    Find  
3 2

1 3

5 3lim
3 2→

+ − +
− +x

x x x
x x

 without using L’Hospital’s rule (even though it applies). 

(b)    Find  0 2

1 1lim →
 − 
 

x x x
.  If the limit doesn’t exist, find the left and right limits.   

(c)    Show that 2lim 2 / 3
→∞

+ − = ∞
x

x x x , and find its (linear) asymptote. 

  

  Hint: write 2( ) 2 / 3= + −f x x x x  as  

 ( ) ( )2( ) 2 / 3 2 2= + − + −f x x x x x x    

and analyze the two parenthesized terms separately. 
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Appendix (Optional) 
 
Definition The limit of f  at 0x  is q  if for any 0ε >  (no matter how small), there is a 0δ >  such 
that ( )ε ε− < < +q f x q  for all x  satisfying 0 0δ δ− < < +x x x  and 0≠x x . 
 
With this definition it is very easy to prove, for instance, that 3lim 2 1 7→ + =x x . Suppose I pick a small 

0ε > . To show 3lim 2 1 7→ + =x x , I need to find δ  such that 7 2 1 7ε ε− < + < +x  whenever 
3 3δ δ− < < +x . (I don’t have to use a specific value of ε . In fact it will not be enough to use specific 
values of ε  because I need to show that result for all ε . Instead, I’ll find δ  in terms of ε , so the argument 
applies for all ε ). This is easy to do, because  

   7 2 1 7ε ε− < + < +x    ⇔    6 6
2 2
ε ε− +< <x , or 2 23 3xε ε− < < + . 

In other words, I can make 2 1+x  within a ε±  ‘tolerance’ of 7  by taking x  within a range of 2
ε±  of 3 , 

no matter how small ε  is. This is exactly what we mean by “ 2 1+x  approaches 7 as x  approaches 3”. 
 
You can use the formal definition of the limit to prove these rules. E.g., to prove that the limit of a sum is 
the sum of a limit, we would show that for any given 0ε > , we can find a 0δ >  such that 
| ( ) ( ) |f x g x a b ε+ − − <  for all x   satisfying 0 0x x xδ δ− < < + , 0x x≠ . Because 

0
lim ( )x x f x a→ = , for 

any given 1 0ε > , we can find 1 0δ >  such that 1| ( ) |f a a ε− <  for all x  satisfying 0 1 0 1x x xδ δ− < < + , 

0x x≠ . Because 
0

lim ( )x x g x a→ = , for any given 2 0ε > , we can find 2 0δ >  such that 2| ( ) |g x b ε− <  for 
all x  satisfying 0 2 0 2x x xδ δ− < < +  and 0x x≠ . For any 0ε > , choose 1ε  and 2ε  such that 1 2ε ε ε+ =  
(for instance, choose 1 2 / 2ε ε ε= = ). Then, choosing 1 2min( , )δ δ δ=  gives us   

1 2| ( ) ( ) | | ( ) | | ( ) |f x g x a b f x a g x b ε ε ε+ − − ≤ − + − < + =  

for all x  such that 0 0x x xδ δ− < < + , 0x x≠ . (We used the fact that | | | | | |x y x y+ ≤ + ). 
 
Example 7.21  Most of the examples you will come across are situations akin to the simple examples in the main part of this 

section. However, there are examples that can really test intuition. Consider for example, 

( ) sin( / )f x xπ= . 

This function is not defined at 0x = , but what is its behavior near 0x = ? Consider the sequence 1 / 2nx n= , 1,2,3,...n = .. Then 

( ) sin(2 ) 0nf x nπ= =  for all n . So does ( )f x  approach 0  as x  approaches 0 ? But now consider the sequence 2 / (4 1)nx n= +  

which is another sequence going to zero. Then ( ) sin((4 1) / 2) sin(2 / 2) 1nf x n nπ π π= + = + =  for all n , so it now appears that 

( )f x  approach 1  as x  approaches 0 . In fact for any [ 1,1]a∈ − , I can find a sequence x  going to zero such that ( )f x  

approaches a . It turns out this function behaves very irregularly as x  approaches zero. In fact, its limit at 0x =  does not exist. 
 


